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ABSTRACT

An abstract of the dissertation of Jin Li for thedbr of Philosophy in Computer

Science presented October 17, 2008.

Title: Window Queries over Data Streams

Evaluating queries over data streams has become an agpealy to support various
stream-processing applications. Window queries are comnusely in many stream
applications. In a window query, certain query operatopeaslly blocking operators
and stateful operators, appear in their windowed versiereszious research work in
evaluating window queries typically requires ordered stseaand this order
requirement limits the implementations of window opemsatand also carries
performance penalties. This thesis presents efficiedt feaxible algorithms for

evaluating window queries. We first present a new data mdalelstreams,

progressing streams, that separates stream progress from physical-arridat.of hen,

we present our window semantic definitions for the nzmshmonly used window
operators—window aggregation and window join. Unlike previogsarch that often
requires ordered streams when describing window semaanticsywindow semantic
definitions do not rely on physical-stream arrival préipsr Based on the window

semantic definitions, we present new implementatiohsvindow aggregation and
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window join, WID and OA-Join. Compared to the existing implementations of stream
guery operators, our implementations do not require spetcedm-arrival properties,
particularly stream order. In addition, for window aggr&gatwe present two other
implementations extended from WIDRaned-WID and AdaptWiD, to improve
excution time by sharing sub-aggregates and to improve meamsage for input with
data distribution skew, respectively. Leveraging our ordezrsisve implementations
of window operators, we present a new architecturetfeas systemOP (Out-of-
Order Processing). Instead of relying on ordered streams to imdgta¢éam progress,
OOP explicitly communicates stream progress to query tggeraand thus is more
flexible than the previous in-order processing (IOP) apgrpoavhich requires
maintaining stream order. We implemented our order-gise@ window query
operators and the OOP architecture in NiagaraST and ¢siasOur performance
study in both systems confirms the benefits of ourdawm operator implementations
and the OOP architecture compared to the commonly used appsom terms of

memory usage, execution time and latency.
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Chapter 1

INTRODUCTION

The input data of many modern applications naturally takesfadhm of data
streams (instead of static stored data sets), suchvasrkgackets, web-click streams,
environmental-sensor data, phone-call records, online asctand bids, cheat
detection in computer games, and stock quotes. Many stresaitenng applications
need to process high-volume streams while providing lomdgteesponses, and thus
require on-the-fly processing. For example, both compo&tworks and financial
markets may generate hundreds of thousands of data itemsipete, and the
monitoring systems must provide real-time informationtisat their clients (e.g.,
network-traffic diagnosis systems and traders) carkemthe correct decisions
regarding the current situation. Just as traditional daghueries serve as an easy-to-
use, declarative, scalable way to process stored redatiata, so to have stream
gueries, which are similar queries over data streamshé®s gradually adopted as a
beneficial approach for online stream processing. Sesgeam-query engines have
been built in the research domain [2, 4, 12, 46, 63] ded/ dave been put to use for
real-world applications. For example, Gigacope is a&astrquery system that
specifically supports network-traffic monitorif@4]; StreamBasg65] and Truviso
[70] are both more general stream-query engines that supgaous applications,

such as financial services, telecommunication monitoand, military systems.
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Stream queries differ from relational-database quenigs/@ main ways. First, users
of stream-query systems are often more interested inyiqgerecent data in the
stream and having the query results updated periodically thagetting the
information over the entire history of the streahofte that standard relational query
evaluation techniques only support one-time evaluationeratian periodic updates.)
Second, as data streams are potentially unbounded, a Iglookierator (e.g.,
aggregation), which require the entire input data set &égforyducing any results, may
have its output delayed indefinitely; and a stateful dper@.g., join) may need to
maintain an unbounded amount of state. Therefore, st®@mtems often make
restrictions on the types of blocking and stateful opesatllowed to ensure that
gueries can be unblocked and the state that they need mtaimaioes not grow
without bound. For example, stream systems may alloly aggregations that can
potentially be unblocked. This condition translates torduagiirement that each group
in an aggregation must eventually be complete, evengthdhe input stream is
unbounded. The requirement indicates that aggregations enstyeeries usually
need to have a grouping condition on a special orderinipuatr(e.g., a timestamp
attribute), and thus these queries can output resutteeagmestamp value increases.
(In some special cases groups end naturally; for examnydlen each group is a
different auction in an online auction system.) Simyladtream systems require a
joining condition that ensures that the join can purgeest-or example, an equality-

join predicate on the timestamp of the input streamssagport join-state purging.
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A window is a special condition specified for stream quepgrators. It is often
defined on an ordering attribute and is very commonly usestream queries with
blocking and stateful operators. Window aggregation is an gggpe with a special
grouping condition on the ordering attribute that maps d¢aple to one or more
groups. For join, a window is used to limit the range ofesih one input with which
each tuple of the other input may join and thus it lirtlies amount of state that the
operator needs to maintain. In query Q1-1 shown belavetaork-traffic-monitoring
system can use a windowed aggregate operator to count themofpackets from
each source IP in a link, M, for the past 10 minutes, adwgrati 1-minute intervals.
We assume the (simplified) schema of the packets iis MsrclP, srcPort, destiP,
destPort, len, ts>. Here,srclP and srcPort are the source IP and port of the packet,
respectively;destiP and destPort are the destination IP and port of the packet,
respectivelyjen is the size of the packet atxis the timestamp.

Q1-1: “Count the number of packets from each source IP for the past 10
minutes; update the results every minute.”

SELECT srclP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WA ts]

FROM M

GROUP BY srclP

Here, RANGE, SLIDE, and WA are called window parameté@tsese parameters
collectively specify a “window of interest” that sepas the input stream into
potentially overlapping sub-streams, which we eatiddow extents. RANGE is the

size of the window, SLIDE is the distance that thedw®im moves each time it

advances, and WA is theindowing attribute on which RANGE and SLIDE are
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defined. For Q1-1, window extents are overlapping 10-minutessebms, for
example, [00:10:00, 00:20:00), [00:11:00, 00:21:00), [00:12:00, 00:22:00), defined on
thets attribute. These window extents can be viewed as sggoiaps whose member
tuples may also belong to other groups. One way to view wiraggregation is as a
seperate aggregate being computed for each window extent.

We briefly review the current commonly used approach Vatuating Q1-1, and then
discuss the issues with each approach. (We will expardatialysis in Chapter 6.)
The existing approach, which we term théfering technique, assumes that the input
stream M is ordered, and maintains input tuples in a buffekthey no longer belong
to the current window extent. It determines window bouedaased on the
requirement that tuples are ordered. That is, the amwiviie first tuple outside of a
window extent closes the extent. When a window extads, the buffering technique
computes the aggregate over the buffered tuples, and thers mxgeed tuples from
the buffer. We see some obvious issues with the bodféachnique. First, it requires
a tuple buffer to materialize each window extent. Séctme content of each window
extent tends to be tied to window operator implememniatiand physical stream
properties such as stream-arrival order. It requires atdepeit streams; as we will
discuss later, out-of-order arrival of tuples arisesually in stream-processing
systems due to causes such as variation in transmdeslimys. If data is not in order, a
sorting mechanism such as Aurora’s BS@ht must be used to reorder the data.
Enforcing order incurs performance overhead such as nyeamat latency, and also
constrains the implementation of windowed-query evaloatithird, the buffering

4
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technique relies on the physical arrival of tuples to datexr window boundaries, and
thus stream abnormalities such as lulls (i.e., periddson-arrival of tuples) cause
troubles: Lulls in physical tuple arrival may delayulegeneration, and thus special
mechanisms such as time-outs have to be introduced fdlin@iulls.

We believe that a root cause of these issues with tinierd approach is a lack of
logical" definitions for stream query operators. Logical defim$ of query operators,
independent of the physical properties of data and data st@egene of the most
important benefits of relational database systemgyicab definitions of query
operators allowogical independence of queries: Users can focus on the meaning of
their queries, regardless of physical data properties;qoueey operator may have
alternative physical implementations that optimize ddferent physical properties,
from which the query system can choose. Logical indepmedes also important for
stream-query operators. Previously, the semantics odominoperators were often
discussed “operationally” and assumed ordered and contingpoutsstreams, and thus
these “operational” semantics led to order-sensitive arften o inefficient
implementations of operators. More importantly, theserder-sensitive
implementations of window operators lead to a commorggdu stream-query
evaluation architecture, which we terh®P (In-Order Processing). The IOP
architecture assumes that streams in a stream syatemordered, and thus

implementations of query operators can rely on thera®utput results or purge

! Here, “logical” refers to semantics that is independétytyysical” implementation details. Logical
window semantics defines the content of each windoengxor, equivalently, it defines the window
membership of each input tuple.

5
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state. Stream systems using the IOP architecture enfodee for input streams and
require that all stream-query operators maintain sti@a®r in their output. However,
we find this approach is often inflexible and inefficierspecially in terms of memory
and latency.

The focus of this thesis is efficient evaluation of daw stream queries, which
includes a new stream model and semantic definitions of winsiweam-query

operators, order-agnostic implementations of the opwratmtivated by the new
semantic definitions, and also an alternative streastesy architecture, which we
term OOP (Out-of-Order Processing), in contrast to IOP. The OOP architectsire i
natural extension of the order-agnostic implementatibstream query operators. In
the OOP architecture, streams carry explicit prognefesmation (e.g., punctuation,
which are special tuples indicating ends of subsets ofareiples). Implementations
of query operators rely on that progress informatiorieats of stream order, to output
results or purge state. In stream systems using the r@® &rchitecture, query
operators can let tuples through on the fly, do not needaintain stream order, and
thus can avoid the associated costs. A short exaogiigaring IOP and OOP

follows.

1.1. An Example Comparing IOP vs. OOP
Consider the IOP evaluation on a query, Q1-2, from a n&twaonitoring scenario

similar to those discussed in Gigascope applica{i®dis
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Q1-2: “Count the number of packets from three links, Control, Main1 and
Main2, for every minute; update the result every minute.”

SELECT count (*) [RANGE 1 minute, SLIDE 1 minute, WA ts]
FROM Control union Mainl union Main2

Q1-2 monitors streams of network packets arriving on thegarate links and
computes the number of packets received owamaling window of length 1 minute
defined on window attribute (WA}. A tumbling window is a commonly used type of
window for aggregation, with non-overlapping window extemackets from each
link arrive in order of the timestamp attribute The Control link contains almost no
traffic; Mainl and Main2 are high-rate data links, and migiitbe synchronized with
respect to their timestamp attributes because of vamgin transmission delays. We
note that streams with widely varying volumes and delyse in various stream
applications, including network-traffic monitoring, finaakidata processing, and
intelligent transportation monitoring. In the rest bé tthesis, we will use network-

monitoring applications as our working scenario.

Window Count (OP)
RANGE: 1 min, SLIDE: 1 min
WA: ts

T

Merge

/\
VAN

Contro Mainl Main2

Figurel-1 IOP qury evaluation for Q1-2
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Consider the cost of enforcing order (for the intermedisireams) in the IOP
architecture for Q1-2 with ordered inputs. Figure 1-1 show®©&nquery plan for Q1-
2. Here, the implementation of the Window Count omereequires ordered streams
in order to determine the boundaries of window extents.si@enthe potential buffer-
space requirements and tuple-processing delay resultingeindoncing order on the
intermediate results feeding into the Window Count. Wlegge operator is an order-
preserving implementation of logical (bag) Union that bores the input streams and
guarantees that the output stream is ordered. To do socayitneed to buffer a
significant amount of data. For example, during lullstise Control link, the Merge
operators in Figure 1-1 have to buffer tuples from thenMimks. Also, if there is
timestamp ts) skew between the links, the Merge operators will iavieuffer tuples
to synchronize the links. The exact amount of buffer sghat the Merge operators
require is a function of the arrival pattern of theut streams, such as duration of
lulls, packet rates on the three links, and their tiamep skew, but there is no upper
bound. In addition to the memory requirements, bufferisg alcreases tuple latency.
Notice that the overhead here for the IOP evaluatio@le?2 is mostly for enforcing
order on the combined stream, to satisfy the requireroérine Window Count

operator.
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Window Count (OOP)
RANGE: 1 min, SLIDE: 1 min,
WA: ts
i
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/\
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Control Mainl Main2

Figurel-2 OOP query evaluation for Q1-2

In contrast, consider the OOP evaluation of Q1-2, wiicdhown in Figure 1-2. In its
OOP evaluation, the aggregate operator uses an order-agmgsémentation, called
WID [41], which we will present in detail in Chapter 6. WID vgwhe window

construct as a group-by condition on a function of thedawving attribute and relies
onpunctuation (i.e., a special type of tuple embedded in a streantioate the end of
sub-streams) for end-of-window notification. (Note that each input stream is
ordered, it is easy to insert punctuation into the stseiihis not already there.) The
OOP evaluation of Q1-2 replaces the order-preserving Meithea simple Union that
passes tuples through and buffers no tuples, which weMedl. In addition, WID

directly reduces tuples into partial aggregates. It immelgiaonsumes input tuples,
possibly maintaining partial aggregates for multiple “opeiridows. These active
aggregations are the only state that the OOP approa&cis rte maintain for Q1-2.

Although the OOP approach may need to keep partial countafthiple windows
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when an input stream is late, in general, the requpadesis much less than would be

required to buffer tuples.

1.2. The Scope of This Thesis

There are three main areas of contribution for tresis.

First, we introduce a new data-stream model that doesissutme ordered stream
arrival and present a formal framework for explicitgfiding window semantics, and
then give definitions for existing types of window usingstiiamework. In our
definitions, window semantics is determined only by the wing@anameters and the
windowing-attribute values of input tuples, regardless of iphydata properties, such
as data-arrival order. We also discuss the window seesdor join, independent of
physical properties.

Second, based on this new window-semantics definitiondeveloped new, order-
agnostic evaluation techniques for window aggregation, inagud/ID (Window-ID),
Paned-WID, and AdaptWID for windowed data-reducing operaifidis. first one is
the basic order-agnostic implementation and the latt@are optimization of WID. In
general, these new implementations can process inpatrstngithout relying on their
arrival ordering, and need neither to buffer nor maiedalindow extents. We also
propose order-agnostic implementations for two commonlkyd ugindow joins,
sliding-window join and tumbling-window join. Our experimersédy shows that
the new techniques significantly improve the overall penénce of the evaluation of
window operators compared to existing approaches.

10
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Third, we propose a new architecture, OOP (Out-of-Ordecd3sing), for stream-
guery evaluation. Our new techniques for windowed-operatolemgntation, which
do not require ordered input streams, allow OOP evaluafigir&eam queries. Query
operators in the OOP approach are freed from the burderaintaining order, and
thus the overall performance of query evaluation mayidigfisantly improved. We
discuss the OOP query evaluation approach and experinyectatpare OOP versus
IOP evaluation for stream queries, in particular, dathicing stream queries. Our
experimental results in two stream-processing systéime she benefits of the OOP
strategy in memory usage and response latency, wikmasat comparable execution

time.
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Chapter 2

BACKGROUND

Stream-query evaluation is comparable to relational-dadadpaery evaluation. A
stream has a schema and is comparable to a relatrefational database. A relation
is a set of tuples. (We use “relation” is in the broaase that duplicates are allowed.)
Relational query operators map relations to relations.ekample, a Select operator
takes a relation as input, applies a predicate to thgorgland produces a relation that
contains only tuples in the original relation that $atike predicate. An Aggregate
operator takes a relation and produces an aggregate valed, eam be viewed as a
special relation with a single tuple. An Aggrgeate operatith group-by attributes
takes a relation and produces a relation with a tupleedeh group defined by the
grouping attributes—each tuple in the result relation aositan aggregate value and
the grouping attribute values. The Join operator takesréhions, applies a join
predicate, and produces a relation that contains patigptes that match via the join
prediate. In relational database systems, a query ope&at have multiple physical
implementations, and thus a “logical” query operator ragrespond to multiple
“phyiscal” query operators. (For example, the Join operat@n have multiple
implementations such as Hash Join and Nested-Loopg Janevaluate a query,
relational database systems need to translate aaloguery into a query execution
plan that consists of physical query operators. As egarator may have multiple
implementations, relational database systems usgiesy optimizer to pick an

12
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optimized query execution plan from a set of possiblewi@n plans, based on the
logical query itself, the physical properties of thetiets involved in the query, and
an expected-cost model for plan evaluation.

Stream-query evaluation conceptually resembles relatgqprely evaluation in
many ways, but it presents a different set of challengalike a relation that contains
relatively static data, in a stream, tuples arrivesiooausly and stream systems have
no control over the arrival rate, order and patterrangples include bid streams in
online-auction monitoring systems and network-packet streamstwork monitoring
systems. A stream query is comparable to a relatiotabdse query — it consists of
qguery operators similar to relational query operatorsyea$iave seen in Chapter 1.
However, as streams are potentially unbounded, in stogaries, blocking query
operators (e.g., aggregation) and stateful query operéays join) often need a
window condiditon so that they can output results andgstate. Query operators
implemented in a pipelined way, such as Select and Propettbe adapted to stream
queries easily.

We believe that important issues for (windowed) streaery evaluation include
a lack of logical semantic definitions for window strequery operators that are
independent of physical stream-arrival properties suchragalarate and order,
handling stream “abnormalities”, and the performancgrebm-query evaluation.

First, as we will show, a logical semantic defintiof window-query operators
will form the basis for a flexibile and scalable stresyatem implementation, as well
as for the optimization of stream-query evaluation. dgsn relational databases, the

13
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logical definition of relational-query semantics titndependent of physical storage
properties of the stored relations, allows differentlenmentations of the same logical
qguery. In the literature, the semantics of window opesatre usually described
operationally and assume ordered and continuous streamseveip in real
applications, stream “abnormalities” such as out-of-ortigrles and lulls arise
naturally. We present our definition for window semastibat are independent of
physicial stream-arrival properties in Chapter 5.

Second, stream systems have no control over theirqathairival properties such
as arrival order, arrival rate and arrival pattern, g they have to deal with various
stream “abnormalities” These situations can lead to great burdens in the
implementation of stream systems and overhead innstgegery evalution, but they
arise naturally in stream applications. For examm@ may produce disordered
results even when its input streams are ordered and synwdd; combining two
ordered streams can lead to disorder, unless the streamexactly synchronized.
Many stream systems need to ensure the order of inteatopéntermediate streams,
which increases the complexity of the implementatibthe stream system and limits
possible optimizations. Such systems also need to sortdi®d input streams, which
increases the performance overhead of stream-query ewaludtighly selective
predicates in a Select or Join operator can filtemaasgt tuples from a stream and lead
to stalls in the operators following the operator with $kelective predicate. Delays in
transmission may produce lulls on an input stream, whiey @aiso stall query
execution. In this thesis, we present implementatiohwindow operators that deal

14
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with stream abnormalities naturally and also perfornitebe than existing
implementations. We also present a new architecturesti@am-query evauation
systems that “glues” our new operator implementattogether, and provides better
performance in stream query evaluation at the systesh le

Third, the performance of stream query evaluation mussfisahe needs of
stream applications, and is normally evaluated frometlperspectives: memory
requirements, CPU cost, and latency. As streams m@gicolarge amounts of data
and are potentially unbounded, it is always important tg kbe memory usage of
stream-query evaluation low and ensure that it does nat githout bound with data
arrival from input streams. The CPU cost of stream-qeeafuation determines the
capacity of a stream system—the maximum stream rateathsystem can sustain.
Also, many stream-monitoring applications have (neaa}-time requirements, and
thus the latency of query results is an important pedoo® measure for stream-
guery evaluation.

In the following, we first review the punctuation mechamisAll the work
presented in this thesis leverages this mechanism. Weereview the architecture of
two stream systems—NiagaraST, a stream query engine¢hatilt by extending the
Niagara Internet query system developed at the UnivedditWisconsin—Madison
[46], and Gigascope, a network-packet monitoring systeneldeed at AT&T to

monitor their backbone netwofk4].
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2.1.  Punctuation

Punctuation is a general mechanism proposed for indicahie ends of sub-
streams. A punctuation is a special tuple embedded ineanstrhaving the same
schema as normal tuples in the stream. Bounded sulorstrean allow blocking
operators to produce results at the ends of sub-streanstateflil operators to purge
the state for each sub-stream when it ends. For @rarmonsider a network-packet
stream, S, with schemasr<I P, destIP, srcPort, destPort, len, ts>. The punctuatiop;,
(202.3.12.4, *, *, *, *, *), embedded in S indicates that theeerar more packets with
source IP 202.3.12.4 in the network-packet stream followingcor an aggregate
guery evaluated over S that computes the count of packetsdach source IP, the
guery can output the count for source IP 202.3.12.4 upon negeiviPunctuation can
have multiple punctuating attributes and provide predicatgsvarious patterns. For
example, the punctuatiop,, (202.3.12.4, *, * * * (, 12:00:00AM)), has two
punctuating attributesyclP andts, and indicates that there are no more packets with
source IP 202.3.12.4 and timestamp smaller than 12:00:00AM. lHepeinctuation
p2, the pattern (, 12:00:00AM) is a range predicate thatheatall the packets with
timestamp values from the the semi-bounded interval up @0TMAM. Previous
studies on stream-query evaluation consider leveraging ymtimot to allow early
output of results from blocking operators and to reduck staintained by stateful
operators [15, 39]. Gigascope uses punctuation to handlefdulsample, to unblock
the order-enforcing implementation of Union during Idls a low-volume network-
traffic link.
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In this work, we use punctuation to communicate the pregrésiata streams (both
input streams and inter-operator streams) to query opergtmrexample, punctuation
ps, (*, %, * * * (, 12:00:00AM)), in a network-packet streasmown in Figure 3-1
indicates the current stream low-watermark is 12:00:00AM¢clwvihieans all packets
with ts attribute value smaller than 12:00:00AM have arrived.

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:23PM)

(102.3.2.7, 211.9.3.6,10, 10, 200, 11:58:00PM)

(202.1.3.0, 202.2.1.2, 5, 10, 111, 11:59:53PM)

(202.6.9.2, 211.7.3.1,11, 9, 300, 11:59:55PM)

( * * * % * (12:00:00AM)) ps

(211.1.3.0, 202.2.1.2, 5, 10,100, 12:00:23AM)
(202.3.1.1, 1025.0.2, 9, 11,210, 12:00:53AM)

Figure2-1 Punctuation p3 embedded in a network-packet stream.

In this thesis, we generally assufimgear punctuation—a special case of punctuation
that uses an ordering attribute (e.g., the windowing at&ifior window operators) as
a punctuating attribute and for which the value of the ardeattribute in the
punctuations in the stream is monotonic. If punctuati®o &ontains other data
attributes, such as the grouping attributes of an aggregatator or joining attributes
of a join operator, the ordering attribute must be mmmotwithin each group—we
term this type of punctuatiogroup-wise linear punctuation. For example, a stream
may contain punctuation on the attribute for data from each source IP, and if
punctuation for each source IP has monotonicly incredsimglues, it is group-wise
linear punctuation. Compared to linear punctuation, group-wissari punctuation

17

www.manaraa.com



provides stream progress at a finer granularity, and thuentpalty allows earlier
output and more efficient state management. Rules fawy quperators for processing
and propagating punctuation have been studied previpttslyWe will also discuss
the implementation of the punctuation rules when we ptesar implementations of
stream query operators. Hereafter, since we only contmgar or group-wise linear
punctuation, we use a single value, instead of a range,valuthe ordering attribute
value in punctuation. For example, we will use the punicin®102.2.45.10, *, *, *, *,
12:00:00AM) instead of (102.2.45.10, *, *, *, * (, 12:00:00AM)) to iratie that all
packets from IP 102.2.45.10 witb attribute value no greater than 12:00:00AM have

arrived.
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2.2. NiagaraST

NiagaraST is a stream query engine that we built byndkig the Niagara Internet
Query System developed at the University of Wisconsin—Nadi#6]. Niagara is a

pipelined, push-based query system written in Java that sapfdit-format data. In

Niagara, query operators are implemented as OS-scheduledds$, and query
operators in a query plan are connected with data quevess; §uery operator waits
on its input queue(s), and puts results to its output queul{s) queues actually
contain pages of tuples rather individual tuples—an opevaites to its output queue
once it has produced a page of tuples. (The default sizeffage is 30 tuples.)

Having data pages in queues, instead of individual tuples, redbeesost of

(202.1.3.0 120:00AM, )
( 12:00:00AM, *)

!

Count
Group-by: srclP, ts

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:2¢
x *, % % 12:00:00AM)
(211.1.3.0, 202.2.1.2, 5, 10, 100, 12:00:23AM)

Selec

(202.1.3.0, 202.2.1.2, 5, 10, 102, 11:59:2¢
(102.3.2.7, 211.9.3.6, 10, 10, 200, 11:58:00PM)
( x, * % * 12:00:00AM)
(211.1.3.0, 202.2.1.2, 5, 10, 100, 12:00:23AM)

Input: Mainl

)

Figure2-2 Query plan for Q2-1 in NiagaraST
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synchronization of operator threads. NiagaraST inhengssystem architecture and
guery execution model of Niagara. Figure 3-2 shows the quanyfpi the following
query, Q2-1, in NiagaraST. Q2-1 computes the number of patkaieach source IP
for every minute, as thes attribute is given in minutes. In Figure 3-2, the Select
operator filters out packets whose srclP does not nta&lyiven two source IPs. The
Count operator maintains a hash table to compute the mwhb®se packets from the
two source IPs in each minute. Punctuation indicatesetite of each minute and
allows the Count operator to output results and purgads table.

Q2-1: “Count the number of network packets in the Mainl link from source IP
202.101.0.0 and 202.101.0.1 in every minute.”

SELECT srclP, ts, count (*)

FROM Mainl

WHERE srclP =*“202.101.0.0” or srclP =“202.101.0.1"

GROUP BY srclP, ts

In NiagaraST, we enhanced the original query operatdisaigara with punctuations
and also added new query operators, such as window aggremadianindowed join,
to support queries over streams. Leveraging punctuatiompiess the progress of

streams, NiagaraST does not rely on ordered streaiits @valuation of windowed

gueries.

2.3. Gigascope
Gigascope is a stream system developed at AT&T that menitetwork traffic in

AT&T backbone network$l14]. It is written in C and C++. Gigascope supports a
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SQL-like language, GSQL. It is a generated-code system—ugdtes queries in
GSQL and the queries are translated into C and C++ cdueh v8 then compiled into
executables. Gigascope supports tumbling-window aggregation gatmed can
support sliding-window aggregation via user-defined functions. 6@z also
supports join with an equality predicate on a monotoricaltreasing timestamp
attribute.

Network-traffic-monitoring applications often need ta@uwee network-traffic streams
into aggregated forms such as NetFlows (i.e., records sunimga network
connections) before further processing. Thus, aggregatioritical for the efficiency
of network-monitoring stream queries. In Gigascope,ggnegation query is split into
a light-weight, low-level aggregation that significantéduces the data volume, and a
high-level aggregation that rolls up the results of lewel aggregation. The grouping
and windowing conditions of the corresponding low-leaed high-level aggregation
are the same. The low-level aggregation directly presesgput packets from a ring
buffer and maintains a hash table to incrementally coenaggregates. The size of the
hash table is fixed, so that the low-level aggregationpcaness packets fast enough
to keep up with the speed of network traffic. Howevee, lbw-level aggregation has
to output an existing partial aggregate on hash collidiow-level aggregation and
high-level aggregation execute in different processedpwadevel aggregation can
potentially run on a different machine or be pushed dowhemetwork-interface card
on a router. In Gigascope deployments, the data volbatehe join operator needs to
handle under normal conditions is much lower thantvelggregate operators need to

21

www.manaraa.com



handle, and the joining condition is very selectiveistthe data volume of the results
produced by join is relatively low.

Gigascope preserves stream order in query evaluationdén tor handle lulls, it also
supports linear punctuatiof33]. Gigascope may need to evaluate queries over the
combined stream of very high-volume main-network traffiks and relatively low-
volume control links, which naturally introduce lulls. llsuon the control links block
the evaluation of stream queries and increase theiromensage. We have discussed
this situation in the example in Sectibr2. To deal with this issue, during the lulls on
the low-volume control lulls, Gigascope estimatesphagress of those control links
on the timestamp attribute of the packet tuples, and s8edar punctuation on the
timestamp attribute that carries the progress infoonainto the packet streams.
During lulls, punctuation helps to unblock query operators bt@atk on the low-
volume control links and may also help these operatopsitge state on the fast main

links.
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Chapter 3

RELATED WORK

Windowing is not unique to stream queries. Windowing is uséd aggregtion in
relational database systems. SQL-99 defines a windoweclimu use on stored data,
and many database vendors support the window clause. SQmM#&® windows to
sliding by each tuple (i.e., each tuple defines a windowng&xtiaus tying each output
tuple to an input tuple. In comparison, in stream queries, gbacing of the
consecutive window extents is normally specified by sigeterms of domain values
such as time interval or tuple sequence numf@k This type of window is more
suitable for applications with bursty or high-volumeaddtor example, in network-
monitoring applications, one possibly wants networkisttes updated at regular
intervals, independent of surges or dips in traffic. Atgetfing a result tuple per input
packet may overwhelm network-monitoring applicationsL89 allows a window to
extend to one or both sides of the target input tuple, whi#ream queries, a window
normally only extends backward (descending timestamp quesee number)—
extending forward would require knowledge of future data.

In this chapter, we review the evaluation of window aggtion and window join in
the literature, as well as disorder-handling mechanigrasented before. We also

briefly discuss other stream query systems.
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3.1.  Window Aggregation Implementations

In the following, we review research work in three categ in the literature that
relates to the three types of window aggregation evatuahiat we will present in
Chapter 6, including the basic evaluation technique for windggregation, the
evaluation of window aggregation using shared sub-aggregati@h,adaptivity in
guery evaluation.

A common method for evaluating window aggregation ishilféering techlnique. It
requires ordered input streams (or enforcing order onnihé streams), materializes
each window extent, and continuously applies the apprepmalational query
operator over each materialized extent. Previous imgiations of window
aggregation more or less resemble the buffered technigasu &t al[3] model and
implement window operators as relational query opesaiger instantaneous relations
whose content changes with the arrival of new tuples expiration of old tuples.
Aurora [4] enforces the ordering of input streams and can suppadowis by user-
defined functions. Gigascop&4] supports tumbling-window aggregates by grouping
on a function over the timestamp attribute, similarhisvtids() function in our WID
implementation that will be presented in Section 5, which requires ordered input
streams to unblock the aggregate operator.nEgative-tuple approach, which sends
tuples with a special “negative” flag to query operatorgntticate that they are
expired, has been introduced for windowed aggregate-opexatioiagon [3, 10, 26].
With negative tuples, the aggregate for the next windadengxan be initialized based
on the aggregate for the current window extent then djussing the negative tuples.
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Thus, the negative-tuple approach can reduce the computétamgg@gation for the
overlapping parts of consecutive window extents. The negaiple approach is
complementary to the WID implementation. For examfie super-aggregation of the
paned-WID implementation as discussed in Section 6.2wanage negative tuples to
further reduce computation.

Computing and sharing sub-aggregation is a common techniquenfooving the
computational efficiency of query evaluation in general. relational database
systems, the sub-aggregation and super-aggregation concsedidy the ROLLUP
operator in SQL-99 and the data cube operf@8} to express a set of aggregates at
different granularities. These operators provide an iefficand readable way to
express aggregation along a hierarchy—for example, téte,sand country—but are
used over stored data.

Sub-aggregation sharing is also adopted in the evaluatisimeam aggregate queries.
The paned-WID implementation as discussed in Sectiona2s sub-aggregation
among consecutive window extents. In Gigascope, theai@n of tumbling-window
holistic aggregates (e.g., quantile and heavy-hitter) usss kghtweight sub-
aggregation for early data reduction followed by super-aggoeganh which
expensive processing is performgkB]. However, Gigascope does not share sub-
aggregation among multiple window extents, as it assuraasoverlapping extents
(tumbling windows). Zhang et a[82] share fine-granularity sub-aggregation for
multiple coarse-granularity stream aggregate queries ey use aggregation with
finer groups to compute aggregation with coarser groups). AaaduWidom 5]
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propose two algorithms, B-Int and L-Int, for shared exeoubf multiple sliding-
window aggregates with different window sizes. Their algms support a user-
polling output model. They maintain a data-structure dbates the sub-aggregates
over the active part of the stream at many diffegganularities. When a user polls a
guery, the aggregate for the latest complete windowwoispated by looking up the
constituent sub-aggregates stored in the data-structideagmegating those values.
Both B-Int and L-Int reduce computation cost, but at thst of increased memory
space. Krishnamurthy et al. propose to use aggregation médpaindows”, which
are similar to panes, for shared execution of multpiedow-aggregation queries
[37]. Nagaraj et al.[47] propose a sub-aggregate-sharing technique that shares
intermediate sub-aggregates among multiple stream-aggiepgeies; their work uses
a computation cost model to select the set of minimost-éntermediate sub-
aggregates that cover the target aggregates [47].

AdaptWID is an adaptive implementation for window aggregati@t deals with the
excessive memory usage induced by data-distribution skew. Adgsia very broad
term in the context of query processing. Both relatiaisabase systems and stream
guery systems leverage adaptivity to optimize resource u€ageclass of adaptivity
used for processing both static and streaming data is glaaryrp-optimization,
where operators in a query plan are reordered or changeedbon updated
information or changing conditions [4, 34, 75]. Anotheassl of adaptivity for
processing streaming data is exemplified by the Eddiesgb6je in which the route
a tuple takes through operators is determined dynamicalbgdban operator
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selectivities, input rates and operator costs to impsgstem throughput. A final class
of adaptive approaches used for both static and streamingsdgtarators that adapt
their state to data characteristics. For examplejn{J8] may store data to disk if the
stream arrival rate exceeds its processing capacityhemdaidapts between processing
current streaming data and processing previously stored dath twaghe arrival rate
of the input streams. MJoji76] processes multiple input streams and adapts the join
order based on the availability of the inputs. The batsed optimization of Kang, et
al. allocates memory to operators in proportion to strapeed, assuming stream
speed is known at optimization time. Aggregation in Gigpecmay adapt from
keeping exact aggregates to maintaining approximate skgf@jeadaptWID differs
from these adaptive techniques in that our algorithm adaptbehavior (state and
guery processing) of the aggregate operator to data skevgtibgurantees exect

answer.

3.2.  Window-Join Implementations

Sliding-window join and tumbling-window join are the mostemdively discussed
stream-join operators in the literature. The windamdition with a join is a join
predicate defined on the windowing attribute. Query Q3-1 stiding-window join
example, defined on the windowing attribut®,with a 3-minute window on the first
input and a 2-minute window on the second input. This joiciSps that a tuplel,

from the first input, joins with tuples witts value greater than.(s — 2 min) from the
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second input, and that a tuptefrom the second input joins with tuples wigwalue
greater thanr(ts— 3 min) from the first input.
Q3-1: “Find network packets pairs from Mainl and Main2 links; the source IP
of the Main1 packet should match the destination IP of the Main2 packet; the
ts attribute of the Mainl packet should be no more than 2 minutes later than
the ts attribute of the Main2 packet and the ts attribute of the Main2 packet
should be no more than 3 minutes later than the ts attribute of the Mainl
packet.”
SELECT *
FROM Mainl [WA ts, RANGE 3 min],

Main2 [WA ts, RANGE 2 min]
WHERE Mainl.srclP = Main2.destIP;
In general, pipelined join implementations used in retati databases, such as
symmetric hash join and symmetric nested-loops joam, lce adapted for use with
streams by adding a state-purging strategy. Most previous wosidamg-window
join assumes that windows are defined on arrival time 215,26, 35, 62], or that
input streams of the join arrive ordered and synchronizeé ahared timestamp
attribute. This assumption implies that tuples from lsttbams share a “global order”
— the timestamp of a new tuple is guaranteed to be ntesrtian that of any tuple
already arrived from either input stream. Based on téssiaption, a window-join
implementation maintains a “window” of tuples for eanput stream. For example,
for query Q3-1, the last 3-minutes of tuples are maintaimethé& Mainl input and the
last 2-minutes of tuples are maintained for the Main2 inMiien a new tuple arrives,
join can purge state based on the timestamp of the unge. tFor example, when the
join operator of Q3-1 receives a new tup/drom Mainl, it purges Main2 tuples with

ts value smaller thahts — 2 min. Then| is matched with stored tuples of Main2, and
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composite tuples of and the matching tuples are produced, and thisnstored.
However, if the global-order assumption is not siisfthis window-join evaluation
might produce incorrect results. For example, supposa2Maples arrive one minute
later than Mainl tuples. That is, a tuplejn Mainl arrives approximately together
with a tuples in Main2 withs.ts = (l.ts— 1 min). Whers arrives, tuples in Main1 with
ts value smaller thansfs — 2 min) have been purged byand thuss will not be
matched with the Mainl tuples withvalues betweersfs— 3 min) and ¢ts— 2 min).
So, part of the results will be missing in this casesoAlwhenl arrives, tuples in
Main2 withts value smaller thar.¢s— 2 min) are still maintained and will be matched
with |, and thus incorrect results may be produced.

Hammad et al[27] propose sliding-window implementations that support redle
input streams, but with potential arrival-time skew, andyaeathe average response
time of those implementations. To optimize the outpte of a window join, Kang et
al. [35] propose asymmetric join implementations that camcgs® each input stream
of the join individually with nested-loops join or haghin, based on the relative
arrival rates of inputs. Hammad et 7] propose scheduling schemes that optimize
for different metrics, such as maximum throughput or sisosvindow first, for shared
execution of multiple sliding-window join queries. Ding aRiindensteinef15]
exploit punctuation on data attributes—instead of on thedewing attribute—for
aggressively purging state by data attributes, to reduce mamagg of window join
gueries. Srivastava and Widoj®2] present algorithms for producing approximate
answers for sliding-window join with limited memory resces. Golab and Oz$R1]
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propose lazy probing and purging to improve computational effigigoc the
evaluation of sliding-window multi-joins that execute tiplé joins together as a

series of nested-loop joins.

3.3.  Handling Disorder in Streams

Out-of-order data is one of the important challenges stram-processing systems
need to handl¢66]. A common way handling out-of-order data is to soe data.
Slack[4] and heartbeatf61] are two mechanisms proposed dealing with disorder in
stream system&ack is a parameter specified by the user as a number of topkes
timestamp value that indicates the maximum amountsafrder allowed in a stream.
A query operator takes a slack parameter and deals witfddisby buffering as many
most-recently arrived tuples as specified by the slack maeanThese buffered tuples
are sorted and thus, as long as the input disorder is wlithislack amount, the query
operator can still process tuples in order. Aurora intredulbeBSort operator, which
is a slack-aware sort operator. Other query operatohksiiora may also take a slack
parameter and may handle disorder themselves.

Heartbeats are also used for dealing with disordenesktbeat is a type of control
signal used to indicate the arrival of input tuples imtepf their timestamp attribute
values. Heartbeats also represent the advancing ofirtittee absence of tuples (i.e.,
during lulls). Heartbeats are similar to punctuation om timestamp attribute, but

punctuation is more expressive. In addition, rules haea llormally defined for how
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guery operators should propagate punctuation, while heartlbeatsan ad hoc
mechanism.

A few stream systems allow out-of-order tuples. Basegroposes revision
mechanisms that process delayed tuples as insertiong téeision mechanisms
support the processing of streams with limited disof2lerThe Juggle operatgb0]
from the Telegraph system intentionally reorders & déiteam in order to advance
“interesting” tuples. Mazzucco et gH¥5] consider a key-based merging algorithm
(actually, a join) for high-volume data streams thapesowith large amounts of
disorder by dropping tuples or using approximate matches. Hetazg[30] propose
punctuation-aware, order-insensitive implementations wordow aggregation and
window join. However, these order-insensitive operatoesrelatively heavyweight,
and are designed for latency reduction in a low-throughmtiésy In contrast to other
approaches for disorder handling that deal with disortddreaoperator level, our OOP
approach deals with disorder at system level—it leveragenctuation to
communicate the progress of streams and thus allows auoemators to be order
agnostic. By avoiding maintenance of stream order, ©xbitbits large advantages in
terms of limiting memory usage, reducing latency, smoothiokvad and thus OOP

significantly improves query evaluation throughtput.

3.4.  Other Stream-Query Systems
In a broad sense, my thesis work relates toighé éf stream-query evaluation in
general. Several on-going and completed research prdjasts been working on
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stream-query evaluation. The STREAM project focuseshengeneral semantics of
stream queries and the theoretical analysis of theamesgificiency of stream-query
evaluation[63]. TelegraphCQ is a stream query engine that adapts puptessing
based on the system workloH®]. Law et al. propose to use user-defined aggregates
(UDA) in SQL to deal with the issue of blocking operatf38]. With UDAs, users
can explicitly specifiy when and under what conditionsAggregate operator should
produce results. The Aurora stream-query engine can prayiddity-of-service
support for stream query evaluation and sheds load wighecego users’ QoS
requirements[4]. Borealis is a distributed stream-processing endije built on
Aurora and Medusa, a distributed system infrastrucf8i¢. Borealis focuses on
distributed, scalable, and fault-tolerant stream praegg29, 30, 68, 80]. Gigascope
supports network-monitoring applications and focuses onepsity high-volume
network-packet streams at line spej@¥]. CEDR focuses on providing flexible
latency-accuracy tradeoffs for stream-query evaluatioigridti accuracy may incur
more latency8]. CEDR query operators may produce “preliminary” reswtsetuce
latency; these query operators may also retract previoelggised preliminary results
later and may produce “revisions” to replace the retraasdlts. Query operators in
CEDR are able to naturally process regular tupleswels as retractions. Other
prototype-stream query engines include Nile, which integragesic online data-
mining functionality with stream-query processing [18, 28],5AQS, which focuses
on the secheduling of multiple stream queries [51, 52, &B8§f CAPE, which
leverages punctuations in its stream-query evaluation [15,/7)6,System S is a
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distributed stream processing engine developed at IBM|. It supports a
programming language called SPADE, which supports generic tgpgs and
building-block operations as well as stream-query operatord a framework for
developing stream applications. System S supports varypes bf streams such as
financial records and sensor data through “input adapters”.

Previous research on sequence databases, tempobalsgésteactive databases, and
incremental maintenance of materialized views is edldab stream queries, as that
research either involves query operators over spetiddwaes from ordered domains,
or requires continuous query evaluation. Sequence databapesrts efficient
expression and evaluation of queries over data wittbatés from ordered domains,
such as timestamps and positions [56, 57, 58]. Temporal databaaintain all
database states, instead of the current snapshot, andupport queries on data’s
valid times—the time that the data are “aliv§d5]. Some active databases
[54]monitor append-only tables and trigger active rule re-evialuaipon tuple
insertion [54]. Incremental maintenance of materialized views dapy requires
incremental query evaluation with one-pass algorithmsribead at most just one scan
of the data, so that view maintainance can be efficieim¢ Chronicle data model is
proposed to define a constraint language that can onbw alliews that are
incrementally maintainablg€32]. All these research efforts deal with the situation
where data is well organized and controlled. Although tpe bf queries that stream
systems support may seem similar to what are supporteddby previous research,
stream-query evaluation presents a different set oflectgds, as streams arrive
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continuously and are potentially unbounded, and stream appiis typically have
(near) real-time requirements. For example, stregstems require low memory and

low latency algorithms and may have to handle strearoraialities such as disorder

and lulls.
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Chapter 4

PROGRESSING STREAMS

Part of the motivation of this thesis is to sepatate notion of progress of a data
stream from its physical arrival order and thus allowrendlexibility in the
implementation of query operators. In this chapter, wegmtea new data model for
streams, the progressing-stream model, which introdbeeasation of stream progress
and relaxes the ordering requirement that many streatersg assume. Intuitively,
stream progress is defined on an ordering attribute and hiesdthe arrival of a
stream in terms of the ordering-attribute value. Puncimatan express stream
progress naturally. For example, the punctuagdn(*, *, *, *, *, 12:00:00AM), in
Section2.1 indicates that the network-packet stream has progrésskizi00:00AM
according to itds attribute. In this chapter, we present only the concépstueam
model, and leave the discussion of the implicationghisf model on stream-system
implementation to later chapters.

The progressing-stream model is in direct contrast thé#hcommonly used model of a
data stream as an ordered sequence of tuples. In IG#nsystream-query operators
rely on stream order to determine when to output resoitt®lbcking operators and
when to purge state for stateful operators. The keyredmsen motivating the
progressing-stream model is that although IOP streataragsely on ordered streams
to unblock and purge, total order on an attribute is not requmstkad, any operator
that can be unblocked and purged using an ordered attributesodredhandled with a
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progressing attribute, as long as we can detect and goiceite stream progress. The
benefit of the progressing-stream model is that it sgparstream progress from
physical arrival of stream tuples, and thereby allows emdiexibility in
implementations of stream query operators. In thevolig, we present the stream-
progress model.
In the progessing-stream model, we model a stream as a sequence of tuples that
“progresses” on a data attribu®, That is, the value of tha attribute in the stream
always eventually exceeds any fixed valueWe term attributeA the progressing
attribute of the stream, and assume thés domain is discrete. In practice, the
progressing attribute is often a timestamp of some .fdtatentially, A can be any
tuple attribute with an ordered domain, and thus streastersyg can use either
timestamps assigned by external data sources or iljetna the system as the
progressing attribute.
To define the notion of progressing stream, we first defieelow-watermarkl{vm)
for attributeA of streanSatn. Let S, be the prefix of S of length Then,

lwm(n, S, A) =min{t. A|t0S-S.} . (Eq. 4.1)
That is,lwm(n, S A) is the smallest value f@x that occurs after the prefg of stream
S Intuitively, the low-watermark indicates the progresfs stream S—the low-
watermark amn indicates the smallest value that may occur &en S (Thus, the
largest value foA that will not occur aftef, in S can also be derived.) For example,
SUpPpPOSES contains tuples;, to, t3, t4 and so on, and each tuple contains a timestamp

attribute value; if the low-watermark &tis 10:00:00AM, it means that there are no
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tuples arriving aftet, that have a timestamp smaller than 10:00:00AM. Figure 4-1
shows the low-watermark of a disordered stresam. lergénow-watermark cannot
be computed based on past tuples—low-watermark potentiatjyires global
information. However, in practice, we can insert purtgdnainto S to explicitly
communicate bounds on the low-watermark.

Definition: StreamS is progressing on attribute A if for every valuev in the domain

of A, there exists an such thatwm(n, S A) >v. When this condition holds, we sAy

is aprogressing attribute for S and thatSis aprogressing stream.

A
N
2 * T
o ]
s
[ )
Arrival Time

Figure 4-1 Low-watermark (lwm) of a disordered stream that @sggs on the
timestamp attribute

Previous work on data streams commonly models a streanpaigntially unbounded

sequence of data items arriving in order. However, modelinigta stream as an
ordered sequence of tuples conflicts with the reality Stedam disorder occurs
naturally in real-world stream systems. The followgig a few causes of stream

disorder.
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* |tems arriving over a network from a remote origin nake different paths
with different delays.

* In a parallel or distributed system, a data stream n@aw lcombination of
several sub-streams from different nodes. The mergegbns can be
disordered if there are different processing or trassiom delays associated
with those nodes.

» Some data streams have multiple timestamp attributdés different orders.
For example, NetFlowW48] records from a router might arrive in order of
“flow end” time, but are disordered on “flow start” ®@nSome queries may
window on “flow end” and others on “flow start.”

* Even when data streams arrive in order, some query opgratich as sliding-
window join, can introduce disorder in intermediate kssu

» Data prioritization[74] may also cause disorder.

Note that although streams are disordered, a progresgibgtatiexists for each of the
cases above. For the first and the second exam@eddta items’ timestamp from
their data source is the progressing attribute; fortimd example, either “flow start”
time or “flow end” time can be the progressing attribdbe;the fourth example, the
timestamp from either input stream can be the progresdimdpute; for the fifth

example, the progressing attribute stays the samedsita prioritization. We believe
that our progressing-stream model better representsvoell data streams. The

benefit of having a progressing attribute and knowing tbgness of a stream is that
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window operators defined on the progressing attribute narementally produce
result and be incrementally purged without requiring orderedrss.

With the progressing-stream model, we have a remaingug:isHow do operators get
progress information on streams? Even if a streapragressing, that does not
actually tell us the progress at every point in time. Wk address this issue in
Chapter 6, which presents the implementation of strgaeny operators. Before that,
we present the order-agonistic semantics of somenstye@ry operators in the next

chapter.
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Chapter 5

WINDOW SEMANTICS

As we discussed in Chapter 1, lack of an explicit dediniof window semantics for
window operators leads to confusion and inefficiency initigdementations of those
operators. In this chapter, we present a formal defmitf window semantics for
window aggregates, and also discuss the semantics of wijudlowNote that for
windowed query operators, we assume that the window syalapecified on one of
the stream’s progressing attributes, and thus a proggeasiribute is also called a
windowing attribute here.

Window operators support new user requirements and adtieedisnitations of
traditional query operators when used over streamssld$astream-query systems are
often more interested in querying recent data in thearsirand having the query
results updated periodically than getting information otrex entire past stream.
Traditional query operators only support one-time evaluamhdo not provide such
functionality. Further, traditional query operators dedined over a static relation and
may not be applicable to potentially unbounded streams.ekample, a blocking
operator (e.g., aggregation) on relations normally regquihe entire input data set
before producing any results; and a stateful operator, {eig) may need to maintain
an unbounded amount of state when the input stream is jpdi{eninbounded. A
window operator breaks the input stream into bounded seérs$ and evaluates the
corresponding query operator over each sub-stream, asdutiblocks the operator
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and limits the amount of state that the operator needsdintain. The window
condition of an aggregate operator is defined wiraow specification consisting of

a set of parameters, such as RANGE, SLIDE and WA. wWinelow specification
defines potentially overlapping finite sub-streams ovemaut stream. We call each
finite sub-stream aindow extent, and one or more aggregates are computed for each
extent. For example, for the following query Q5-1, whigkhie same as query Q1-1 in
Chapter 1, the window extents are 10-minute sub-streamsotralap by nine
minutes. A network-traffic monitoring system can use sacWwindowed aggregate
guery to count the number of packets from each sourcedRinik, M, for the past 10
minutes, advancing at 1-minute intervals. As before, thensalof the packets in M is
<srclP, srcPort, destlP, destPort, len, ts>.

Q5-1: “Count the number of packets from each source IP in the Main link for
the past 10 minutes; update the results every minute.”

Select srclP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WATTR ts]

From Main

Group By srclP

There are different types of windows for aggregation. @Sek aime-based diding-
window, which is common in stream queries. We refer to thedew as time-based
because the windowing attribute is a timestamp attrid.will also discuss other
common window types later in this chapter, suchupte-based windows that are
defined on the tuples’ arrival order, apdrtitioned windows that use a partitioning

attribute to “split” a stream into partial streams befdividing each into window

extents.
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A fundamental problem with previous stream-query evaluamproaches is the lack
of a logical definition for window operators. Logicaéfinitions of query operators,
independent of the physical properties of data and data starabehe particular
algorithm used, are one of the most important advantafeslaiional database
systems. Logical definitions of query operators allsers to focus on the meaning of
their queries, regardless of physical data properties, amddprguidelines for the
correctness of alternative implementations thatinupe for different physical
properties. Such logical independence of query operatatsasmportant for stream-
query operators. As we will discuss later, the logicdinde®n of the window
operators opens the way to more flexible and efficieptementations.

Previous approaches for implementing window operators gineequire processing
input tuples in windowing-attribute order, partly because tledyy on ordered input
streams to “operationally” determine window semantiosgeneral, we find these
previous approaches to be inflexible and inefficient. Rebal buffering technique
described in Sectiof.1 that has been commonly-used previously. A typicalebedif
technique maintains input tuples in a window buffer, and d@testwindow-extent
boundaries based on the assumption that tuples are ordéned.the end of an extent
is detected, the buffering technique computes the aggregatéhevbuffered tuples,
which are exactly the content of the window extent] then purges expired tuples
from the buffer. Notice that the input stream mustoha#ered so that the content of
window extents can be correctly determined with thidwtepe. In addition, the

buffered technique potentially requires large amounts ofiang as it buffers window
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extents and may need additional space to enforce the ofdire input stream.
Buffered techniques also require progress of the input streguarantee progress of
guery execution. When there are too few tuples in the isfnelam, additional
mechanisms such as timeouts and punctuations are needetr® grogress of query
execution. In summary, buffering techniques rely on thesiphy stream-arrival
properties, that is, strict order, and continuous arrf8seam imperfections, such as
out-of-order tuples and lulls, must be handled as exceptissing additional
mechanisms.

In this chapter, we present explicit logical defonis for window aggregation and
join. In the next chapter, we will present implemeéintas for window operators based

on our definitions.

5.1.  Window Aggregation: WID Window Semantics

In general, the window semantics of window aggregaticdhdsrelationship between
tuples and window extents. In our definition, window semars determined by the
window specification of the window aggregate and the windgsattribute value of

the tuples in the stream, and is independent of physicsdmns properties such as
stream order and continuousness. It is also independany @pecific implementation
of window aggregation.

Using Q5-1 as example, we show that window semanticdeadefined independent
of stream-arrival order. Consider the window extenfor Q5-1 corresponding to
10:10:00 AM — 10:20:00 AM. The content wfincludes all the input tuples witis
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value within the range [10:10:00 AM, 10:20:00 AM). In general, ¢batent of a

window extent is independent of the arrival order of ifgut tuples, unless the
windowing attribute is arrival time.

In the following, we first present a framework—the W8Bmantics framework—that
consists of three functions for defining window semantmswindow aggregation.
Then, we present the window semantics definitions fopua types of windows. Our
window semantics is defined solely using the window spetiin and the values of

the windowing attribute of the tuples in the input stream.

5.1.1. WID Semantics Framework

The WID semantics framework consists of three fumstiovindows(), which
specifies the window-ids (i.e., window identifiers) fdentifying window extents, and
extent() andwids(), which define the mappings between window-ids and ingpie$
in either direction. All the three functions are ided from an operator window
specification,S and the set of tuple3, in the input stream. Notice thatis only a
logical entity and is not required to be materializedun implementation for any type
of window.
The windows() function defines a set of window-idf8, given a window specification
S and a set of tuple$: windows(S, T) = W. We can use values from an ordered
domain, such as non-negative integers, as window-ids. Seppat the start point of
Q5-1 is 00:00 AM and that we use non-negative integers fatomirids, then the first
fifteen window extents can be identified with window-ids 04 as follows:
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Window Extent Window-Id

00:00:00 AM - 00:01:00 AM 0
00:00:00 AM — 00:02:00 AM 1
00:00:00 AM — 00:09:00 AM 8
00:00:00 AM - 00:10:00 AM 9
00:01:00 AM - 00:11:00 AM 10
00:02:00 AM - 00:12:00 AM 11
00:03:00 AM - 00:13:00 AM 12
00:04:00 AM — 00:14:00 AM 13
00:05:00 AM — 00:15:00 AM 14

Notice that the first nine window extents of Q5-1 areiglnindow extents, which do
not have a full 10 minutes of tuples and only occur attdne jgoint of the query.
The extent() function defines the content of each window ext@&ien a window
specificationS and the set of tupléBin the input streanextent() maps a window-iav
to the subset of tuples inT that belong to the window extent extent(S T, w) =U [
T. Theextent() function can be naturally defined based on the meanitigeokindow.
For example, in Q5-1, window 10 contains all the tuplesh wst values where
00:01:00AM AM < ts< 00:11:00 AM.
The wids() function indicates to which window extents a tupleohgk. Thewids()
function maps a tupleto a subseV of window-ids inW: wids(S, T, t) =V IO W. For
example, a tupléwith ts value 00:00:05 AM belongs to windows 0 — 9, which can be
derived based otits: The first window-id fort is calculated by

(t.ts— start time) / SLIDE

= (00:00:05 AM — 00:00:00 AM) / 60 seconds

=0.

The last window-id fot is calculated by
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(t.ts+ RANGE - start time) / SLIDE — 1

= (00:00:05 AM + 600 seconds — 00:00:00 AM) / 60 seconds — 1

=09.
For a sliding-window query with a window specification RN 10 minutes and
SLIDE 1 minute such as Q5-1, each input tuple belongs tot @fseonsecutive
window extents. Tuplé above belongs to window extents O throughvds([10, 1,
ts], T, t) = {0, 1, 2, ..., 9}. Note that theids() function does not require that each
tuple belong to consecutive window extents, althoughishiatie for most commonly
used types of window. Also, in this example, the windoava/hicht belongs do not
depend o, thoughT is involved for some other kinds of window specificatiohise
extent() function andwids() function are duals of each other—t&dent() function
specifies the set of tuples in a window extent andnilds() function specifies the set
of window extents to which a tuple belongs. ®xeent() andwids() functions define
the logical window semantics from different perspectivéke extent() functions
defines window semantics from a window-centric view—wHhigples each window
extent contains, while theids() function defines it from a tuple-centric view—to
which window extents each tuple belongs. We have fobatdtheextent() function is
typically more intuitive to define, and thus can be usetha reference to prove the
correctness of its correspondingds() function; thewids() function proves more

useful in implementation, as we will discuss in Chapter
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The semantics of each type of window can be defined by gingvithese three
functions. Next, we present the semantics of séweramon types of windows used

by aggregation, by defining three functions for each windgmet

5.1.2. Sliding Windows

For sliding-window aggregation, the sliding window separdatesiriput stream into
overlapping window extents, and an aggregate is computeccagRrwindow extent.
The window specification for sliding-window aggregation dstss of three
parameters, RANGE, SLIDE and WA. RANGE specifies #mgth of the window;
SLIDE specifies the step by which the window moves dm thow frequently an
aggregate is computed; and WA is the windowing attribute-atindute over which
the window is specified. Potentially, WA can be any tugkeibute with an ordered
domain, as long as it is a progressing attribute. Wenassbe arrival time and the
arrival position of tuples in a stream are explicitibtites of the input tuples, called
arrival-ts and row-num. Thus, either of these twoikattes can serve as the WA
attribute, in addition to any progressing attribute orifynaresent. Q5-1 uses a

sliding-window aggregation with window specification [RANGE rhihutes, SLIDE

01234567 8910111z
I I I >

ts (min)

Figure5-1 Three window extents of a sliding-window aggregat@s1.
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1 minute, WAtsg]. It computes the number of packets from each sourcedPeach
window extent (10-minute sub-stream). Figure 5-1 shows ttwesecutive window
extents of Q5-1. Tumbling-window aggregation is a special oas#iding-window
aggregation whose consecutive window extents do not ovéragumbling-window
aggregation, RANGE equals SLIDE.
Following the WID semantics framework, we define thedew semantics of sliding-
window aggregation as follows. First, we use non-negatitegers as window-ids.
Thewindows() function is defined as below.

windows (T, §JRANGE r, SLIDEs, WA a]) = {0, 1, 2, 3, ...} (Eq. 5.1)
Next, using the defined window-ids to identify window extetig extent() function
defines the content of a window extent. Thaexsent() maps a window-idy, to a set
of tuples in the window extent identified by The definition ofextent() just follows
the natural meaning of sliding-window aggregation. For edspresentation, we
assume thaRANGE, S_IDE andWA attribute values are all in the same units.

extent(w, T, JRANGE r, SLIDE s, WA a])=

{07 | ming(T)+(w+1)* s-r <ta<ming (T)+(w+1)* s (Eq. 5.2)

In the definition ofextent(), miny(T) represents the smallest value of the windowing
attribute over all the tuplesin
Thewids() function maps an input tuple to a set of windextents to which the tuple

belongs. It is the inverse of tlextent() function. LetW = windows (T, JRANGE r,

48

www.manaraa.com



SIDE s, WA a]). Thewds() function for sliding-window aggregation is dedth as
follows:

wids(t,T,S[RANGE r, SLIDE s, WA a)=
{wow | [ta-min,(T))/s|-1<ws [(ta+r-min,(T))/s]-3

(Eq. 5.3)
For example, theids() function for Q5-1 is as follows:
wids(t, T, SJRANGE 600, SLIDE 60, WA ts])=
twow | [fets—min,g(r)/60][-1< ws|[t1s+ 600~ min,g(T))/60]-4

Suppose that the min value of ttsaattribute of the input stream is 10:00:00AM, the
window-ids of an input tuplé with ts value 10:00:05 AM can be calculated as
follows. The first window-id fot is calculated as

( (tts—ming(T)) /601 - 1) + 1

=[(10:00:05 AM — 10:00:00 AM)/60- 1) + 1

=0
The last window-id fot is calculated by

[ (t.ts + 600 —mine(T))/ 60] — 1

= [(10:00:05 AM + 600 — 10:00:00 AM)/60 — 1

=9
In sliding-window aggregation, as each tuple belongs tonaecutive set of window

extents, tuple belongs to window 0 through 9.
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5.1.3. Partitioned Windows

A partitioned-window aggregate is similar to a sliding-windaggregate, but it
uses an additiongartitioning attribute, PA?, to split the input stream into sub-streams
(or partitions) before applying the other parameters invilmelow specification to
each sub-stream. Q5-2, shown below, is a partitionedeminaggregate query; it is
identical to Q5-3 except that the srclP attribute in QS-2 partitioning attribute
instead of a group-by attribute.
Q5-2: “For each source IP, find the maximum packet length of the past 1000
packets from the source IP; update the results for every 10 packets from the
source IP.”
SELECT srclP, max(length)

[RANGE 1000 rows, SLIDE 10 rows, WA row-num, PA srclP]
FROM Main

Q5-3: “For the past 1000 packets, find the maximum packet length from each
source IP; update the result every 10 packets.”
SELECT srclP, max(length)

[RANGE 1000 rows, SLIDE 10 rows, WA row-num]
FROM Main
GROUP-BY srclP
However, the semantics of Q5-2 and Q5-3 are signifigatifferent. Q5-3, a non-
partitioned query, takes a sequence of 1000 tuples from the ingamnsas a window
extent, then divides those 1000 tuples into groups by srdR@mts the packets in

each group. In short, Q5-3 first computes a window extedttlen sub-divides that

extent into groups. In contrast, Q5-2 first sub-dividedraam into “partitions” (sub-

? It is also possible that PA is a set of attributes.
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streams) by the partitioning attribute, and then sub-dive@es partition into window
extents independently, based on the other three parameierthe window
specification. The progress of each partition is indep@ndé each other, and the
number of window extents in each partition may diffdote that for time-based
window aggregates, the effect oPA attribute is the same as using it as a group-by
attribute[7], and thus for time-based partitioned-window, B#e parameter does not
provide more expressive power.

The window semantics definition for row-based partitebnsliding-window
aggregation is very similar to that of sliding-window aggten, but it uses
compound values,d, pa), as window-ids—€ is a non-negative integer representing
the index of a window extent in the partition goadis a partitioning-attribute value.

windows(T, JRANGE r, SLIDE s, WA a, PAp]) =
{(id, pa) |id (0, 1, 2, ..), palT.p } (Eq. 5.4)

HereT.p means the projection dfon the partitioning attributg.

The extent() function andwids() function for partitioned sliding-window aggregation
are similar to Egq 5.2 and 5.3, respectively, but have aiti@ua check on the
partitioning attribute value of the tuple and p@component of the window-id of the
window extent to which the tuple belongs.

The extent() function in this case determines the content ofvilrelow extent based
both on its integer index and partitioning attribute value.tHe extent() function
definition, we use the functiorank(t, attr, p, T), which, given a tuplé, an attribute

attr, a partitioning-attribute valup, and a set of tuple§, returnst’s rank in thep
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partition of T, in the order oéttr. For examplerank(t, ron-num, PA, T) in the
following extent function returns tuptés arrival position in the partition to which it
belongs, i.e.t.PA.
extent ((id, pa), T, JRANGE r, SLIDE s, WA row-num, PA p]) =
{tOT |t.p=pa, Minownun(T) + (d+ 1) *s—r1 <
rank(t.row-num, pa, T) < MinNow-nun{T) + (Id + 1) * s}
(Eq. 5.5)
The wids() function is given below, whenank = rank(t, ron-num, pa, T), andW is
the set of window-ids defined by thndows() function in Eq. 5.4:
wids (t, T, §RANGE r, SLIDE s, WA row-num, PA p]) =
{(id, pa)OW | t.p = pa, [ (rank — MiNow-nun(T)) / S| — 1<id <
[(rank + r — Minownun(T)) / S| =1}
(Eq. 5.6)

5.1.4. Landmark Windows

A landmark window is similar to a sliding window excepaittia tuple belongs to
all window extents that begin after its arrival, ahds we use “ALL” as the RANGE
parameter value in landmark-window specifications. Q5efbw is a time-based
landmark-window query, and it computes the number of padmtsng from each
source IP, and the SLIDE parameter indicates thatebelt will be extended in 1-
minute increments—according to tteeattribute. It is similar to Q5-1, except that the
scopes of the window extents of Q5-4 keep increasing, acll wandow extent

subsumes all the previous ones.

Q5-4: “Count the number of packets from each source IP; update the results
every minute.”

SELECT srclP, count(*) [RANGE ALL, SLIDE 1 minute, WA ts]
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FROM Mainl
GROUP BY srclP

The windows(), extent(), andwids() functions for landmark windows are defined as
follows.
windows (T, JRANGE ALL, SLIDE s, WA a]) ={0,1,2,3,...} (Eq.5.7)
extent(w, T, JRANGE ALL, SLIDE s, WA a]) =
{tOT |ta< mingT) + (w+ 1)*s}
(Eq. 5.8)

wids(t, T, JRANGE ALL, SLIDE s, WA a])=
fwow | w>[(ta-min,(T)/s]-1
(Eq. 5.9)

In the wids() definition in Eq. 5.9,W is the set of window-ids defined by the

windows() function in Eq. 5.7.

5.1.5. Slide-by-Tuple Windows

Figure5-2 Three window extents of a slide-by-tuple windaggregation

A slide-by-tuple window is a special type of sligiwindow in which the
RANGE and SLIDE parameter of a window are specibeddifferent attributes. In

such a case, SATTR (slide attribute) and RATTRdeaattribute) are used in place of
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WA to express the attributes over which SLIDE andN&E are specified,
respectively. A common example of this type of gusra query with RANGE over a
timestamp attribute (RATTR) and a SLIDE of 1 roneorow-num (SATTR). In such
a case, each tuple arrival introduces a new winextent that has length RANGE and
ends at the newly-arrived tuple. Query Q5-5 belsva islide-by-tuple window, and
Figure 5-2 shows three window extents introducethbse tuples.

Q5-5: “Find the maximum packet length of packets for the past 5 minutes;
update the result every tuple.”

SELECT max(length)
[RANGE 5 minutes, RATTR ts, SLIDE 1 row, SATTR row-num]
FROM Main
For this type of window, the number of window exteis data-dependent—a window
extent is associated with each tuple. We do notausémple integer sequence for
window-ids; instead, we use values TRATTR—the projection of input tuples on
RATTR—for window-ids. Thewindows() and extent() functions for slide-by-tuple
windows are given below.
windows(T, JRANGE r, RATTRra, SLIDE 1, SATTR row-num)]) =
{tra|tOT}
(Eq. 5.10)
extent(w, T, JRANGE r, RATTRra, SLIDE 1, SATTR row-num]) =
{udT|w-=r<urasw
(Eq. 5.11)
Assuming unique RATTR values, each RATTR attribuddue identifies a distinct
window extent that ends at that tuple. Let the afetvindow-ids defined by the
windows() function in Eq. 5.10 b&/. Thewds() function for slide-by-tuple windows
is given by:
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wids (t, T, §RANGE, r, RATTRra, LIDE 1, SATTR row-num)) =
{wOW |tra<w<tra+r} (Eq. 5.12)

Here, the window-ids of window extents to whichléupbelongs fall betweetira and
(tra+r).

A more general form of the slide-by-tuple windowst8LIDE asn tuples instead of
one tuple. For example, the SLIDE parameter vafu@®5 can be changed to 5 and
then the window of Q5-5 advances every 5 tupleseHeveryn™ tuple defines a
window extent. Thus, we use tRATTR-values of verynth tuples (i.e.n, 2n, 3n, ...)

in T as window-ids. Thenmndows(), extent() and wids() functions of this type of
window are given by:

windows(T, §JRANGE r, RATTRra, SLIDE n, SATTR row-num)]) =
fv |t O T, mod(t.row-num, n) = 0, w=t.ra} (Eq. 5.13)

extent(w, T, §JRANGE r, RATTRra, SLIDE s, SATTR row-num)) =
{uOT|w=r<urasw (Eq. 5.14)

wids (t, T, §RANGE r, RATTR ra, SLIDE s, SATTR row-num)) =
{wWOW |tra<w<tra+r} (Eq. 5.15)

The extent() andwids() functions in Eq. 5.14 and 5.15 are textually $hene as those
for the slide-by-tuple window in Eq. 5.11 and 5.B2t here in Eq. 5.18) is the set
of window-ids defined by theindows() function in Eq. 5.13. We assume that SLIDE
of the slide-by-tuple windows is defined on tuplagival order to the stream system,
which is what theéow-num attribute indicates. To use tuples’ arrival orttea specific
window operator as SLIDE, we need the tuples’ atrorder to that operator, which
may not be the same e@n-num. For example, if Select is used before the opgrato

some tuples may be filtered out. Also, tuples magcome disordered during

55

www.manaraa.com



processing before the window operator. Howeverwkng the tuples’ arrival order at
a window operator is not a big issue, as the ouoder be easily observed by the
operator itself.

Another variation of the slide-by-tuple window, whiis an even more general form,
is where the SLIDE is tuples over the logical order of the stream on $AETR
attribute. For example, the following query Q5-6ugh a query

Q5-6: “Count the number of packets for the past 5 minutes; update the result
for every 5 tuples as defined by the ts attribute order.”

SELECT count(*)

[RANGE 5 minutes, RATTR ts, SLIDE 5 rows, SATTR rank(ts)]
FROM Main
The functionrank(ts) maps each tuplein the input stream to its rank in order of the
attribute values. So instead of advancing a windesed on tuple-arrival order, we
advance it based on the logical order impliedtisoylhus, the window in Q5-6 is of
length 300 seconds over tkeattribute, and slides by 5 rows over the logicaleo
defined byts. Conceptually, this window suggests sorting before@lowing. Here, we
only considerank(RATTR)—the attribute defining the slide order ne¢al agree with
the range attribute. Thaindows(), extent() and wids() functions of this type of
window are defined below. Theindows() function definition uses sank(t, attr, T)
function, which, given a tupleand attributeattr, returnst’'s rank inT in the order of
attr. Here, we assume RATTR values are unique in theafmg function definitions.

If the uniqueness of RATTR values is not guaranteesl can use RATTR and the

tuple arrival order together to determine a tuplais.

56

www.manaraa.com



windows(T, JRANGE r, RATTRra, SLIDE n, rank(ra)]) =
vt O T, mod(rank(t, ra, T)), n) = 0,w =t.ra}.
(Eq. 5.16)
extent(w, T, JRANGE r, RATTRra, SLIDE n, rank(ra)]) =
{uOT|w=-r<urasw. (Eq. 5.17)

wids (t, T, §RANGE r, RATTRra, SLIDE n, rank(ra)]) =
{WwOW |tra<w<tra+ r}. (Eq. 5.18)

In Eq. 5.18Wis the set of window-ids defined by thendows() function in Eq. 5.16.
Discussion: The window semantics definitions we present is gaction cover almost
all types of windows that we have seen in the diere. Plus, we believe the
framework we present here for window semanticsnd&fn can be used for new types
of windows, for example, windows with non-consewsitiuples or that overlap in a
spatial domain. Further, the definitions of windeemantics directly influence our
implementation of window operators. As we will see the next chapter, by
introducingwids() and window-id into our implementation, whichcalled WD, our
implementations do not need to assume orderedhstraad are more efficient.

The complexities of Thextent() andwids() functions are correlated and might affect
the efficiency of our window aggregation implemeiatas. The computation costs of
the our window aggregation implementations arelypddtermined by how efficiently
thewids() function can be evaluated, which is often inegrselated to the complexity
of thewids() function. As themds() function is evaluated over each input tuple um o
window aggregation implementations, a complxs() function can increase the
computation cost. Theids() functions we have given for existing types ohdows

are defined with linear expressions, and thus tayebe evaluated efficiently. Further,
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the complexities oéxtent() andwids() functions determines whether it is possible to
automatically derive themds() function from theextent() function. As theextent()
function is more intuitive to define, automaticatlerivingwids() function from the
extent() function is convenient for users when introdgcmew types of windows. In
general, without constraints on the operators ¢hatbe used in a function, inversing
the function can be arbitrarily hard. For examjegerse functions may not exist for
functions withfloor(), ceiling(), log(), exp(), and high-order polynomial expressions.
Functions with only plus, minus, multiplication,vidie and low-order polynomial

expressions can be inversed automatically.

5.2.  Window-Join Semantics

Stream systems allow only joins whose state camgnotv indefinitely. The join
operator in stream queries must have a conditiom @nogressing attribute of each
input that ensures that every tuple can eventuladlypurged. This requirement
indicates that a tuple of one stream, L, should only join with a boundeadge of
tuples from the other stream, R. With the progidsthe R stream, the tuptecan
eventually be purged after it has been matched alitbthe potential R tuples with
which it might be joined.

Tumbling-window join and sliding-window join areehmost commonly used join
operators in stream queries—windows are used tetign the amount of state that
join maintains so that the state does not growomittbound. Q5-7 and Q5-8 below
are examples of tumbling-window join and slidingadow join, respectively.
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Q5-7: “Find the network packet pairs from Mainl and MainZ2, in which the
source IP of the Mainl packet matches the destination IP of the Main2 packet
for each 5 minute interval.”
SELECT Mainl.srclP, Mainl.destlP, Main2.srclP, Main2.destIP, Main2.ts
FROM Mainl, Main2

[RANGE TUMBLING 5 minutes, WA ts],
WHERE Mainl.srclP = Main2.destIP
Q5-8: “Find the network packet pairs from Mainl and Main2 in which the
source IP of the Mainl packet matches the destination IP of the Main2 packet;
the Mainl packet should follow the Main2 packet within 2 minutes, and the
Main2 packet should follow the Mainl within 3 minutes.”
SELECT Mainl.srclP, Mainl.destlP, Main2.srclP, Main2.destIP, Main2.ts
FROM Mainl [RANGE 3 minutes, WA ts],

Main2 [RANGE 2 minutes, WA ts]
WHERE Mainl.srclP = Main2.destIP
It is intuitive to first think about “window joinassuming two input streams, M1 and
M2, that are ordered, continuous, and synchronitedsuch a scenario, we can
consider window join as a join operator maintainmguple-buffer for each input
stream to materialize a “window” of tuples; a tugdéns with all the tuples in the
tuple-buffer of the other stream when it arrivesother words, two tuples join if they
have ever been in the tuple-buffers of the joirihet same time. Tumbling-window
join and sliding-window join differ in the way thabey update the content of the
tuple-buffers. For a tumbling-window join, when tiugple-buffer has a full window of
tuples, the buffer is emptied and a new windowtstadote that for tumbling-window
join, the sizes of the windows of the two inputssinbe the same. For a sliding-

window join, the tuple-buffer always maintains #l fmindow of tuples (except at the

very beginning of the query evaluation), and neples purge old tuples from the
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buffer. For example, considering the tuple-buffer the Mainl input of Q5-8, new
tuples purge tuples that are more than three nsralteer from the buffer.

Next, we present the semantics of tumbling-windom jand sliding-window join
without assuming physical arrival order of inpueains. For ease of presentation, we
sometimes assume the window condition is the amily ¢gondition and there are no
other join predicates. In practice, there will lber join conditions, which can be
viewed conceptually as a post-filter on the resoftshe join using just the window

conditions.

5.2.1. Tumbling-Window Join and Sliding-Window Join

Just like window aggregation, window join is alsefided on the progressing
attributes of the input streams, and the windowdi@n can be seen as an additional
predicate of the join, regardless of the physicalsal properties of input streams. The
window condition of a tumbling-window join can bees an equality predicate on (a
function of) windowing attributes. Suppose thatidaR are the left and right input,
respectively. The window condition of a tumblingrdow join is equivalent to an
equality join predicate with integer divisiojl,.A /W |=| RAg /W |. Here, AL andAg
are the windowing attributes of L and R and W is thedewm size. For example, in
Q5-7, a 5-minute tumbling-window defined on an attriltstef both input streams is

equivalent to a equality join predicatdainlts/5|=| Main2ts/5|. The window

condition of a sliding-window join can be seen as axdbgoin predicate

LA -W_ <RARz <LA +Wg. Here W and W are the window sizes defined on L
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and R, respectively. For example, Q5-8 is an exampla sfiding-window join,
defined on an attributés, with 3-minute window on input L and 2-minute window on
input R. A tuple/, from L joins with a tupler, from R ifr.ts> (I.ts— 2 min) and.ts >
(r.t s= 3 min) and ifi.srclP = r.destIP. Equivalently, this join specifies that a tuple,
from R, joins with tuples witls value greater tham.{s— 3 min) and smaller than.i{s

+ 2 min) from L when the IP addresses agree, whichrid paedicater(ts — 3)< |.ts

< (r.ts + 2). Seen this way, the semantics of both tumbling-wingiervand sliding-
window join do not assume any physical stream propesies) as stream order or
synchronization of the two input streams.

Discussion: In previous studies, window-join semantics have been blulngd
confusion between stream progress and physical-strearatgmoperties. Algorithms
proposed for implementing sliding-window join typicallgsame not only that each
input stream of the join is ordered and continuous, botadsume that the arrival of
input streams are synchronized—tisevalue of an input tuple should be no smaller
than thets value of previously arrived tuples of either input. If Wiedowing attribute
is arrival time, input streams for join naturally satithis “global order” property.
Otherwise, using previously proposed algorithms requires amaing global order, or
incorrect results may be produced. For example, supposepthiestream Mainl for
the sliding-window join query Q5-8 is delayed for 5 minutes tadjoin algorithm
assumes “global order”. When the tuple buffer for Maicontains tuples with
timestamps from 10:03:00AM through 10:05:59AM, the tuple bufferMain2 will

contain tuples with timestamp from 10:09:00AM through 10:10:59AMidg tuples
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in the tuple buffers for Mainl and Main2, produces totallyngroesults for Q5-8—
for example, a Mainl tuple with timestamp 10:03:00AM and anRlduple with

timestamp 10:10:59AM will be joined.

5.2.2. An Alternative, Window-Semantic Definition for Windowido

We believe the window semantics for join can be definean alternative, window-
oriented way. Just as in the WID semantics definitibmwiodow aggregation, each
input stream can be separated into potentially overlappindow extents, which are
represented by window-ids. Then, the join relationshipbEadefined on the window
extents of each input stream of join—we define join betweadow extents based on
window-ids.

In more detall, defining window semantics of windowed jmirthe window-oriented
way has two parts, defining window extents on each inpudrstrand defining a join
relationship between window extents. Then, two tuplesijadhey belong to window
extents that can be joined. As a tuple may belong taipfeiwindow extents, two
tuples join as long as they have the sets of theidovinids overlap. Defining window
extents for window join is the same as for window aggtion. To define the join
relationship for the window extents requires a binargtiah, widjoin, that contains
pairs of matching window extents. Then, basedvafjoin and the window condition
of a join, we can derive match() function that maps a tuple to a set of window estent
with the content of which it should join: A tuples mapped to a window extewtif t

belongs to some window extenthat matches in thewidjoin relation. Note that here
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thewidjoin relation defines window semantics for join from a daw-centric view—
which pairs of window extents should join. Timatch() function provides the same
window-semantic information from a tuple-centric view—asplof which window
extents a tuple should join. We expect thatch() function might be useful in the
implementation of window join, just as theds() function in the window semantic
definition for aggregation. For a particular type of win@éowoin, we can define its
window semantics by providing these required functions.nTkéth the window-
oriented semantics definition, the result of a winddveen is defined as the union of
the result of joining each pair of window extentswidjoin. Here,L andR are the
input streams of a windowed joif; and Tr are the set of tuples ib and R,
respectively;Spec. and Specg are the window specifications defined dnand R,
respectively;p is the predicate of the join; and. and Wk are the window-ids for

window extents defined fdr andR, respectively.

result(T, , Spec, , Tr, Spoecg, widjoin(W, ,\WR), p) =
Uextent(i,T,_, Spec, ) PIpextent(j, Tg, Soecg)
i, jOwidjoin(W,_Wg)
(Eq. 5.19)

An example: In the following, we present the window-orientednsatics definition
for sliding-window join, as an example to show haimdow join semantics can be
defined in the window-oriented way.
We first define window extents on each input streame define them as advancing

on every unit of the WA attribute values. Figur8 Shows window extents on the

input streams, L and R, of a sliding-window joinjthwwindow specifications
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[RANGE 3 minutes, WAtsz] and [RANGE 3 minutes, WAsg] on L and R,
respectively. Suppose the unit of tiseattributes is seconds, then the window extents
defined on L and R are the same as window extenta §liding-window aggregation
with window specification [RANGE 180 seconds, SLIOEsecond, WAtsg] and
[RANGE 180 seconds, SLIDE 1 second, W44, respectively—each window extent
is a 180-second sub-stream and consecutive winotemts overlap by 179 seconds.
Assuming R and S start at the same time (i.e.,d_Rwrhas the same mig) value),
then a window extentv on L joins with the window extent on R with thensa
window-id. Thus, letW. andWr be the set of window extents defined on L and R,
respectively, thevdjoin relation is defined as follows.

widjoin(Wi, WR) = {(i, i) [i OWL, i OWr} (Eq. 5.20)
If L and R do not start with the sartevalue, we can use the smaltevalue as the
startts value for both L and R. This way, the input streaith the larger stairis value
has empty window extents defined, but whéjoin relation remains the same.
A tuple from each input stream joins with tuplesao$et of window extents on the
other input stream. Here UNIT is the unit for WAues (or the UNIT of the one with
finer granularity) and we assume the WA valuest stam 0. Thematch() functions
for L and R are defined as follows. Basically, eagple joins with every window
extent on the other side with window-id in the rargf the window-ids of the tuple
itself. Note that thematch() functions uses a band condition on the windosv-ad
window extents.

matChL (l, T, S [RANGEL, WAL], Tr, SQ[RANGER, WAR]) =
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{wOWg | 1WA -1 <w<[(.WA_ +RANGE )JUNIT| - 1
(Eq. 5.21)
matchg (r, Tr, SR{RANGER, WAR], Ti, S [RANGE,, WA, ]) =
{wOW_ | rwWAg -1 <ws[(RWAg + RANGER)/UNIT| - 1}
(Eq. 5.22)
Here,| andr are tuples from L and R, respectively; andWk be the set of window
extents defined on L and R, respectiv8lyandTg are tuples in L and R, respectively;
S and & are window specifications defined on L and R, eespely. Also, we
assume thatVA,, WAr and UNIT are the same granularity; or coarsersuaite

converted to finer.
WAR (sec) WAs(sec)
10 widjoin
11

12+
13

10
11

12
13

_________ 190
191
192

190
191
192

Figure 5-3 The widjoin relation for a sliding-window join—a windowtent k of R
joins with the window extent k of S.

In summary, we have discussed that the window condftorthe most commonly

used two types of window join, tumbling-window and sliding-windjmm, can be
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clearly expressed with equality or band predicates orwihdowing attributes. We
believe that the window-oriented way of defining wind@in semantics is generic
and expressive and can potentially be used to define sesémt@ny type of window
join. With the window-oriented approach, window semanté different types of
windows can be defined in the same framework, and thusethargics of different

types of window join can be compared to each other.
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Chapter 6
ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW

AGGREGATION

In this chapter, we present order-insensitive implememtsitiof window
aggregation. Order-insensitive implementations of queryabges process tuples on
the fly without requiring or enforcing order on the inpustéad of relying on stream
order to determine the boundaries of window extents, tingsiementations leverage
punctuation to communicate the completion of extents. In thiptéa we assume the
granularity of punctuation is the same as the gratylaf the window slide
parameter. We discuss punctuation generation in Chatperr8e Timplementation
algorithms for window aggregation are proposatiD, Paned-WID and AdaptWD.
WID is an implementation based directly on the Wiihdow semantics described in
Chapter 5. We categorize different types of windows usedjtpyegation based on the
information that each type of window requires in ordemap tuples to window-ids.
This categorization distinguishes different requirememtthe WID implementation
for different categories of windows. Paned-WID extemdtD with shared sub-
aggregation to reduce computation cost. AdaptWID combines th®® W
implementation and the buffering implementation to redtite memory cost of
aggregation when the input data distribution is skewed hidiet algorithms are order-
insensitive implementations and assume the presdngenotuation to notify query

operators about the ends of extents.
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6.1. The WID Implementation

The WID implementation is a direct application of euindow semantics, and of the
wids() function in particular. The WID implementation ssevindow-ids to
encapsulate window semantics. Further, WID explictignsforms the window
semantics of queries into data semantics wadaattribute. In short, WID tags each
input tuple with window-ids using the appropriatels() function, and then uses the
window-ids as an additional grouping attribute for the aggeegaerator. In more
detail, WID introduces a new operat@ycket, that implements theids() function
and tags each tuple with its window-ids. The window-igsagpended to tuples as an
explicit data attributenid. Aggregate operators include thed attribute with the
grouping attributes defined in the query, and compute the aggreghte for all
groups defined by the combined set of grouping attributes. The afndsndow
extents are signaled by punctuations. For example, suppedenestamp values of
the input stream of the query Q6-1 shown below star2#0:00. When a punctuation
<k xoxoxox 0 12:11:00> arrives, it indicates that alldlpackets withs value smaller
than 12:11:00 have already arrived and thus window 10 is ctangéeare previous
window extents. Here, ths attribute is called thpunctuating attribute. Typically, the
punctuating attribute is the progressing attribute of astrén a window query, the
windowing attribute should be the progressing attributthefinput stream, and thus
the punctuating attribute is also the windowing attribute.

Q6-1: “Count the number of packets from each source IP from the past 10
minutes; update the results every minute.”
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Select srclP, count(*) [RANGE 10 minutes, SLIDE 1 minute, WA ts]

From Main

Group By srclP

Readers may wonder how the result of window aggregatiouldlibe interpreted, as
the result of our window aggregation implementatioroisardered and does not have
a timestamp attribute associated with it. The redtindow aggregation represents
aggregate values over time ranges. Thus, in general weotcappend a single
timestamp value to the window aggregation result. (Tumblimgleww aggregation is
special because the time range can be representedgdea fanction of timestamps.)
However, a progressing attribute is needed for the owtipwindow aggregation so
that down-stream operators can progress. In our WiDeimmghtations, the output
stream of window aggregation has an impliaid attribute as the progressing
attribute. Also, remind that thextent() function maps a windowd back to the set of
tuples in the window by a condition on the timsestampevaf tuples. We could

implement a similar function to mapwad attribute value back to the timestamp range

of the window extent when presenting results to users.

6.1.1. An Example

Figure 6-1 shows a query plan for evaluating the slidingdaw query Q6-1 using
WID. The query plan consists of two query operatorspiineket operator, which tags
input tuples with window-ids using the wid attribute, and the eggpe operator,
Count, which uses the wid attribute as a grouping attriboteompute window

aggregation. The wid attribute contains a range value itioitates the range of
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window-ids associated with each tuple. For example, idngge to windows 10 to 19,

and thus the Bucket operator appends a wid attribute val20 1 t1 and outputs a

( srclP, wid, cout
<202.10.1.2, 10, 100>

Count <203.12.0.1, 10, 200>

Hash Tabl (GROUP-BY srclP, wid)
srclP wid | count L% ]
10 | 100 o2t ( srclP, destlIP, ts, wic
203.12.01] 10 | 200 || .**" <202.10.1.2, 201.33.4.7, 12:10:30, 10-23'>
<203.12.0.1, 202.2.10.3, 12:10:45, 10-20'>
202.10.1.2| 19 51 '
203.12.0.1] 19 | 52 Bucket < % % * 10 >p

(RANGE 10 minutes
SLIDE 1 minute)

( srclP, destIP, ts)
<202.10.1.2, 201.33.4.7, 12:10:30,>

<203.12.0.1, 202.2.10.3, 12:10:4%>
*, *, 12:11:00p>

Input
Figure6-1 A query plan for Q6-1 using WID

tuple,t;’. Here, 10-20 represents the interval [10, 20). The Counatopgroups on

he srclP andwid attributes, and incrementally maintains the count okeis for each
group in a hash table structure. It uses each tuple to uguatgroups within the
tuple’swid range. For example, the tupiéis used to update 10 groups, for windows
10 to 19. Note that here the Bucket operator could replecatgple 10 times and tag
the tuple copies individually with a window-id for eacfhen the Count operator
would be a normal punctuation-aware aggregate operatonesttinot handle range
values. We use range values for tid attribute to avoid increasing the data volume
of the inter-operator stream between the Bucket and tCopgrator, at the cost of
slightly more complexity in the implementation of @u. In Figure 6-1, the ends of
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window extents are marked by punctuations. For exampletymationp indicates that
all the tuples withis value smaller than 12:11:00 have arrived, and is translatdteby
Bucket operator into a punctuatign that indicates the end of window 10. The
punctuatiorp’ unblocks the Count operator—it allows the Count operatoutput the
aggregates that matgh

The WID implementation provides one-pass query evaluaoonsliding-window
aggregate queries, eliminating the need to materialize wineikients (i.e., retain
input tuples in an intra-operator buffer), and thus cantlgreaduce memory usage
during query evaluation. The WID implementation is veexible and scalable. It
does not put constraints on physical properties of the isfpaams such as arrival
order and continuity. Some other window aggregate impiéiens, such as the
buffering implementation, require the data be sortearbebeing aggregated. In
contrast, WID does not have such constraints. In iaddithe aggregation step is
window-agnostic sinceid is treated as a data attribute, and the implementatitre
window semantics is easy to manage and verify, as isolted in the Bucket
operator.

The detailed WID implementation varies for differeyppes of windows. Before going
into the details, we first introduce the concept ofternand present a categorization
of windows based on the “context” that different typé&svindow aggregation require
in order to map tuples to window-ids (i.e., to implemem wids() function in the
Bucket operator). Categorization helps to determine theoppate implementation
techniques for given types of windows.
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6.1.2. Categorization of Windows

We define two types of “context” information that miag used in mapping tuples to
window-ids: backward-context and forward-context. For a tuplet, its backward-
context is information about tuples that have arrivetbrieet. Forward-context is
information about tuples that will arrive aftedf awids() function requires backward-
context, it implies that the implementation willeteto maintain information about
previously arrived tuples. For example, the implementatibm partitioned tuple-
based window must maintain a count of tuples that hawedrfor each partition. The
rank() function in thewids() definition for tuple-based partitioned windows reflects a
backward-context requirement, becauapk() needs to return a tuple’s rank in the
partition it belongs to and thus requires knowledge ofrineber of tuples in the
partition ranked before the tuple. Typically, having tont&in backward-context is
not a significant restriction, because it does not gmewne from determining
window-ids for tuples on the fly. However, if \ads() function requires forward-
context, that means that information from tuples argvafter a tuplé is required to
calculate the window-ids fdr This requirement implies that the exact window-ids fo
tuple t cannot all be determined until those tuples arrive. Tawgds() function
requiring forward-context implies that tuples may needbdodbuffered and delayed.
Slide-by-tuple windows require forward-context. The usehef WA values of later
tuples (i.e.t.RATTR < w < t.RATTR + RANGE) in thewids() definition for slide-by-

tuple windows reflects a forward-context requirement.
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Based on their forward-context requirements, we caiagorindows into FCF
(forward-contextfree), and=CA (forwardcontextaware). We define a window as FCF
if the wids() function does not require forward-context and thuss#teof window-ids
for each tuple can be determined on the fly. Time-basedows, tuple-based sliding
windows and partitioned windows are FCF. We define a windseWwCA {orward-
contextaware) if thewids() implementation requires forward-context and thussete
of window-ids for each tuple cannot be determined on the&Sfide-by-tuple windows
and its two variations (slide bytuples over row-num an@dnk(RATTR)) are FCA.
Within the FCF category, we define a window &% (context free) if the
implementation of itsvids() mapping requires neither forward- nor backward-context.
Tuple-based and time-based sliding windows are CF.vilg) function of a CF
window maps each input tuple to a set of window-ids base#yg @n the window
specification and the tuple itself, and correspondinglshe implementation, window-
ids for each tuple can be determined as the tuple arrnésn@ state needs to be
maintained. Next, we discuss the implementation detdilke Bucket and Aggregate

operators for commonly used types of windows.

6.1.3. The WID Implementation for FCF Windows

For FCF windows, the Bucket operator tags each tupleawtindow-id range, which
represents the set of window-ids in the range. The Agtreggerator is window-
agnostic—it uses theid attribute as an additional grouping attribute. (Although the

wid attribute contains range values, an Aggregate operagit rsupport such range
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values, as well as overlapping groups, for purposes otaentindows. For example,
the Aggregate operator for querying spatial data may alsotoesegbport range values
and overlapping groups.) Next, we discuss the WID impleatient for FCF

windows, which consists of two operators, the Bucket operand the Aggregate

operator.

6.1.3.1.Bucket

The first step in the WID implementation is to tagke tuple explicitly with window-
ids. The Bucket operator takes a window specification parameter, and tags each
tuple with its associated window-ids by using the appropmatis() function. The
basic structure of the Bucket implementation is ght#orward as shown in Figure 6-
2. TheBucket() function is called for each input item. We use a rargjae attribute
to represent the range of window-ids for each tuple.prbeessTuple() function calls
the wid_bounds() function to get a pair of valuewsid start andwid_end, which it
appends to the input tuple. Th&d _bounds() function computeswid start and
wid_end based on thaids() function defined for the type of window. Thed start
value indicates the first window extent to which the ¢uipélongs; and theid end

value indicates the first window extent to which the tulges not belong. Here we
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State Maintained:

range:dow size of the aggregation;
slide: window slide of the aggregation;
wa: windowing attribute used;

Bucket(x)

if x is a tuple
ProcessTuple(x);

else if x is a punctuation
ProcessPunctuation(x);

ProcessTuple(t)

(wid-start, wid-end) = wid_bounds(t);

create t' by appending the range value, (wid-start, wid-end), to t as the wid
attribute;

output t';

ProcessPunctuation(p)

(wid-start, wid-end) = wids_bounds(p);

create p' by appending wid-start to p;

change the wa value of p' to *;

output p';

wid_bounds(t)

wid-start = lower bound of wids([range, slide, wa], t.wa);
wid-end = upper bound of wids([range, slide, wa], t.wa);
return (wid-start, wid-end);

Figure 6-2 Order-insensitive implementation of window aggregatithe Bucket
operator

assume a tuple belongs to a consecutive set of windtewnts. In the rest of the
discussion, we use the phrase “the range of window-agéfer to this pair of values.
Punctuation on the windowing attribute is turned into punicinan thewid attribute.
The processPunctuation() function applies the same&id bounds() function to
punctuation and appends thed_start value computed as thed attribute value for
the punctuation. In addition, the windowing attributeueadf the punctuation is turned

into a wild card (indicating this attribute can match aalpe). Here we assume linear

75

www.manaraa.com



punctuation on the windowing attribute. Note that alladbmplexity of tagging tuples

with window-ids is encapsulated in the Bucket operatguréi 6-3 shows the query
plan using the WID implementation for Q6-1, which is adCiry.

A key difference in the Bucket operator for various typewindows is the amount of
tuple state that the Bucket operator must maintain. Fowi{@dows, Bucket does not
need to maintain any tuple state and can append a ramgedmiw-ids to each input

tuple immediately when the tuple arrives, sincewhds() function for a CF window

requires no context information. For windows that @&~ but not CF, Bucket may
need to maintain state for previously arrived tuples. &ample, for tuple-based
partitioned windows, the Bucket operator needs to rememberaimnt of tuples that
have arrived for each partition and then the window-&tgyed for each tuple are

computed by using the count when the tuple arrives asitftmwing attribute value.

T

Count
(GROUP-BY srclP, _
wid) ( srclP, destIP, ts, idw
<202.10.1.2, 201.33.4.7, 12:10:30, 10-2Q'> t

<203.12.0.1, 202.2.10.3, 12:10:45, 10-2Q0' > t

< *’ *’ *’ 10 > p'
Bucket
(RANGE 10 minutes, SLIDE 1 minute, WALts)
( srclP, destlP, ts )
<202.10.1.2, 201.33.4.7, 12:10:30>t
<203.12.0.1, 202.2.10.3, 12:10:45>t
< * * 12:11:00 > p
Input

Figure6-3 Query plan for Q6-1 with the WID implementation
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6.1.3.2.Aggregation

Given a tuple tagged with a range of window-idsyi¢l_start, wid_end), an Aggregate
operator, such as Max, use® update the n aggregate values whaigevalues fall
betweenwid start and wid end. We have extended the Aggregate operator to
understand range values. The implementation for the Aggregerator is shown in
Figure 6-4. In this implementation, tiAggregate() function is called for each tuple.
Aggregates for window extents are incrementally updateld tuples in the extent
using the ProcessTuple() function and a hash table is used to maintain these
aggregates—how exactly tiReocessTuple() function updates the aggregates depends
on the aggregate function being computed. Note that withicéxwindow-ids, the
window specification and thus the window semantics iserpbsed to the Aggregate
operator. When punctuation arrives, the hash-table taiagd by the Aggregate
operator needs to be scanned in order to output the appeopggtegate values. An
alternative that avoids a hash-table scan is to oufjggfregates on hash-table
collisions, similar to the slow flush mechanism to discussed in Chapter 8. In
contrast to implementations that hardwire arrival-ordessumptions into the
implementation, using punctuation to signal the ends eodew extents is more

flexible.
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State Maintained:
ht: hashtable maintaining partial window aggregates;
gpattr: the grouping attributes of the aggregation;

Adggregate(x)

if xis a tuple
ProcessTuple(x);

else if x is a punctuation
ProcessPunctuation(x);

ProcessTuple(t)

for each wid in [t.wid-start, t.wid-end)
compute hash value, hval, for t with t.gpattr and wid;
update the aggregate value maintained in ht[hval] using t;

ProcessPunctuation(p)
scan ht and output any group with wid value equaling p.wid-start;
output a punctuation with value p.wid-start;

Figure 6-4 Order-insensitive implementation of window aggregatibae: Aggregate
operator

For tuple-based window aggregation, WID assumes an exjplipke sequence
number,seg-num. Thus, if a count-based window is defined on tuple-arrivdko
(arrival at the stream system, not the Aggregate opgraber stream system needs to
tag each input tuple explicitly with a sequence number septag the tuple’s arrival
order, and insert punctuations on gag-num attribute of the input tuples. Then, the
Aggregate operator can useg-num as the windowing attribute. However, if the
window is defined on the tuples’ arrival order at the Aggreggoerator, WID itself
needs to tag each tuple with g#-num. For tuple-based sliding-window aggregation,
the Bucket operator needs to maintain the count of tupdgéshve arrived, tag each

tuple with itsseg-num, and also insert punctuation when a window extent entienwW
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the Aggregate operator receives a punctuation, it firgiubsl results for the ending
extent and then produces a punctuation for it. For tupleebasrtitioned-window

aggregation, the Bucket operator needs to maintain thet adutuples for each

partition, and tag each tuple with its rank in its pamifialso the Bucket operator
needs to insert punctuation for each partition. ThusAtigregate operator for tuple-
based partitioned-windows receives punctuation on bothdomiid and the

partitioning attributes. Therefore, the Aggregate operaigpuis results individually

for each partition in a window extent, and also producestpation for each partition

in the extent.

The correctness of punctuations affects the accuracyestilts. We assume
punctuation is “grammatical” in this thesis. The regweatval of punctuations can
reduce the delay in outputting results. Delays in puncioadirival delay results, and
increase the state that the Aggregate operator must keepjobuobt affect the

correctness of results.

6.1.3.3.Summary and Discussion

In addition to naturally accommodating out-of-order tupl®$D is also more flexible
in implementation. WID decomposes window-aggregate eiafuato several parts,
including implementation of window semantics, detectioth agtification of the ends
of window extents, and internal management of thee staqquired for aggregation.
Compared to the buffering implementation, this decompaosiltows each part to be
more independent of the others and thus allows a mesgbit implementation
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overall. In WID, the window semantics is implementexplicitly by the Bucket
operator and is encapsulated in that operator. This eratipsuwallows other parts of
the implementation (e.g., state management for aggoegadb be window-agnostic.
Therefore, WID can support different types of windowslgaghe only part of the
implementation that may vary with different typeswahdows is the computation of
window-ids in the Bucket operator. The ends of window extans signaled by
punctuations. The Aggregate operator implementation ressritwht of the relational
aggregate operator, although it outputs results increrhental our current
implementation, the Aggregate operator maintains paatglegates for each group
using a hash table. However, the internal state Hea\ggregate operator maintains
and the data structure used for the internal state argiafexlocal to the Aggregate
operator and are independent of the other parts of tHenmeptation. For example, in
the buffering implementation, the content of a windowest is associated with the
tuples buffered by the Aggregate operator, while in WID ttipdes are tagged by the
Bucket operator with the window extents to which theyihg) independent of the
implementation of the Aggregate operator.
In terms of performance, we believe WID has sevedslatages over buffering,
including reducing memory usage, latency, and execution filmese improvements
are discussed further below.

Reducing memory usage: WID reduces memory usage by avoiding buffering input
tuples. The memory requirement of the Bucket operatmingmal and the Aggregate
operator maintains only one aggregate value for each gnoe@ch open extent. The
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main space savings come from never explicitly matenmmegi window extents, but
instead incrementally maintaining aggregates for multiplendew extents
simultaneously—almost always a beneficial tradeoff. &mample, if RANGE is 60
minutes, and SLIDE is 5 minutes, current window-query evialagorithms would
buffer one hour’s worth of tuples; in contrast, theDAdpproach needs to buffer only
12 (= 60/5) aggregate values—one for each active window e)@ewbndary space
savings come from avoiding any buffer space devoted to gastirof-order tuples.
The tuples can be tagged and processed as they arrivenljjheffsetting expense is
sometimes retaining a few more aggregate values for inetenpindow extents.
Reducing latency: WID incrementally maintains window aggregates, and thus
avoids the response delay that the basic bufferindemmntation requires due to
scanning and aggregating tuples at the end of a window eX#dt.can output the
results for the window extent immediately upon thevariof the punctuation covering
the extent. (A punctuation covers a window extent ifrdmgge of the extent is within
the range of the punctuation; for example, in Q6-1, thetpation <*, *, 10:20 AM>
covers the window extent [10:10 AM, 10:20 AM).) When thpuit stream contains
delayed tuples, WID may have even more latency advanthgeause punctuation
can express end-of-extent messages promptly, while tlebamsms that buffering
uses to deal with disorder, such as heartbeats or stask,provide for the worst-case
disorder to guarantee the accuracy of the results. Haweve also note that the
latency of the buffering implementation can be imptbleg both buffering tuples and
maintaining aggregates, at the cost of extra memory dsageaintained aggregates.
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Reducing execution time: WID potentially uses less CPU time than the buffering
technique. As the window semantics information is tagged each input tuple, WID
handles each tuple only once in order to update all th@lpaggregates of window
extents to which that tuple belongs. Recall that inbiering implementation, each
tuple is stored in the buffer and revisited multiple 8mence for each window extent
to which the tuple belongs. We note that for certain agges, such as Count and
Sum, the execution time of the buffering implementatan be reduced by leveraging
the aggregate of the previous extent to compute the aggrdgateimow extent. For
example, to compute window count, the count for a windgtengé can be initialized
by the count for the previous window extent minus the nurobexpired tuples and

thus the cost of re-scanning the unexpired tuples can ledvo

6.1.4. The WID Implementation for FCA Windows

For FCA windows, we cannot calculate the set of windisvfor a tuplet on-the-fly,
since this would require information about tuples arrivinghenfuture. In many cases,
the requirement of forward-context leads to buffering dalaying tuples. However,
careful examination of theids() function for slide-by-tuple windows and two of its
generalized forms reveals that we can determine ofilytHer each tuple the range
into which these window-ids will fall, but not the exas#t of window-ids. For
example, given the range of a slide-by-tuple window, &\ and a tupld with
t.RATTR = s, the set of windows-ids to whichs mapped fall into the rangeRATTR,
t.RATTR + RANGE), and thus Bucket will tatgwith this range. (Recall that for slide-
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by-tuple windows and variations, we use the values oftthibwge on which the range
parameter is define®RATTR, as window-ids; also, because of that, the range of the
window-ids of a tuple does not determine the set of wind®weadit.) This range has

a different meaning from that used for FCF windows, aedbihding of window-ids

to input tuples has to be deferred to the Aggregate operator.

Below, we present a one-pass algorithm for the Aggregsgeator for slide-by-tuple
windows with time-based ranges. This algorithm procesael tuple only once and
handles out-of-order tuples the same as in-order tup&scally, we avoid retaining
and re-processing tuples by maintaining partial aggregatesxtents and by using

these partial aggregates to initialize partial aggregateseforextents.

6.1.4.1.Slide-by-tuple windows

We start with an example first. Remember that we tupées’ windowing-attribute
values as window-ids for slide-by-tuple windows. Each tigbéats a new window
extent that ends with the tuple, and we use the tuplislow attribute for the
window-id of the extent. Thus, for each input tuplevith t.RATTR = s, the first
window extentt belongs to has window-&l Further,extent(s) = {u 0 T | s— RANGE

< U.RATTR < s}, which ends when all tuples witRATTR value no more than the
RATTR value oft have arrived. We also define an auxiliary extenttftinat is the
earliest subsequent extent to whiatoes not contribute-atx_extent(s) = {u 0 T |s<
U.RATTR < (s + RANGE)}. Note that aux_extent(s) = extent(s + RANGE). Here,

extent(s + RANGE) does not necessarily correspond to a tupl@there might not
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be a tuple with windowing attribute equalde RANGE. For ease of presentation, we
denote the window extent and the auxiliary extent oketuplith RATTR value s as Ss
and Es respectively, and refer to thenbiass collectively. One can think of Ss and Es

as the “start bin” and “end bin” fdr respectively; and Ss has bingénd Es has bin-

id (s + RANGE).
t1.A t1A+i
@% o 1 0 3
init Ssi1 Esl
2.A t2.A+i
(b)g 0 1 2 1 0 §
ini  Ssl Ss2 Esl Es2 Es3
t3.A t3.A+i
(C)é 0 1 213 2 1 0 §
ini  Ssl Ss2 Ss3 Esl Es2
t4.A t4.A+i
(d)é 0 1 23| 2 [3]2 1 0 §
ini  Ssl Ss2 Ss3 1 Ss4 Es2 Es3 Es4
t5.A t5.A+i
(e)g o |1l 2 |3lal3]2]|3]2 1 0 §

ini Ss1 Ssb Ss2 Ss3 Esl Es5 Ss4 Es2 Es3 Es4

Figure6-5 Example of insertion, initialization, and update of bm&i@w tuples arrive
for slide-by-tuple count

Figure 6-5 shows the processing of a slide-by-tuple quemsrevkthe aggregate is
count, theRATTR is A, and RANGE is. We depict the bins as laid out in order of the
A attribute. Letg = tj.A. We use Ssj and Esj to refer to the start bin and rideoé

tuple tj, and, in Figure 6-5, a bin-id is associated with the eénelaoh bin. We mark
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the region from the end of a bin, to the end of the next bin with the partial aggregate
value for the birb. For example, in Figure 6-5(d), the partial aggregateE&dr is 2
and for Ss4 is 3. The reason that we label regionkisnway is to indicate that any
later bin whose bin-id is in the region would have thattioution to its partial
aggregate from tuples seen so far. For example, as shdvigure 6-5(e), the start bin
of t5, Ss5, initiated with the arrival @b, has a contribution of 1 to its count from
tuples arrived so far. Futher, the partial aggregates ofbénspdated incrementally—
the partial aggregates of bins between the start bin E5harend bin Es5 d§ are

incremented by 1 with the arrival tf

Before | vl Vi vm
Bl A Biass BmM
e N
After vi|vli+1l |vi+l| |[vm+lvm
B1 Ssn Bi Bm Esn

Figure6-6 Bin updates for arrival of tuple tn

Let us examine the stages in Figure 6-5 sequentially, andleotise arrival of tuples
t; —ts. We start with an initial special bin, init, with wat = 0. The arrival of; adds
bins Ss1 and Esl1 (Figure 6-5(a)), with initial values 1 and Spectively. Tuplet,

with s, > s starts bins Ss2 and Es2, with Ss2 set initially to tHeevaf Ssl
incremented by 1 (because Ss2 has the contribution lhatimt; andty), and Es2
initialized to Es1 (Figure 6-5(b)). Esl is incremented bioIeflect the contribution

of to. Figure 6-5(c) shows the effect if wheres; > s,: Ss3 and Es3 are created and
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initialized, and Es1 and Es2 are incremented. Figure 6shys the need for E-bins:
Ss4 is initialized from Es1, reflecting the contributmiti, andts, but witht; out of the
extent for Ss4. Finally, Figure 6-5(e) shows the arfan out-of-order tuplé;, with

S < <$. Sshis initialized from Ss1 and Es5 from Esl, with bs, $s3 and Esl
incremented. If at this point, punctuation arrives indigcafutureA values are greater
thans,, the operator can emit the aggregate values for Ss1 n8s5s2—the start bin
of ty, t5, andt,, and discard Ss1 and Ss5.

Figure 6-6 shows the general case for the arrival of tiyphen (Ssn, Esn) spans
bins B1, B2, ..., Bm. Bins B1 and Bm are “split” and used taailuee Ssn and Esn;
every bin Bi, 1 < € mis also updated to reflect the contribution,of

Figure 6-7 contains the algorithm for the aggregate operatorsiide-by-tuple
windows. The aggregate operator needs to store partial agegdgabins that are not
expired. Initialize sets up the speciatit” bin, labeled with e. The ProcessTuple()
function sets up new start and end bins for each arriving,tupén updates the
appropriate intervening bins. THe&rocessPunctuation() function outputs results and
purges the appropriate bins. This algorithm for slide-by-tupladews avoids
reprocessing tuples at the cost of maintaining auxiliargregt(end bins); but, on the
other hand, it does not need space to retain input tuples, A maintains partial
aggregates for active window extents incrementally. 8fbee, we expect that this
algorithm will compare favorably to the buffering implemetion in terms of

execution-time performance and latency performance, dhdexcomparable in terms
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Sttwo collections, S and E, each storing pairs of the form [bid, pa] where
pa is the partial aggregate for bin with bin-id bid. S stores start bins and E
stores end bins.

Initialize()
[* aggr-init depends on the aggregate function; for exanagigr-init = O for
count */
[* We use e as the bin-id of the init bin*/

add [-o0, aggr-init] to E

Aggregate(x)

if xis a tuple
ProcessTuple(x);

else if x is a punctuation
ProcessPunctuation(x);

ProcessTuple(t)

[* Let the bin-ids of start-bin and end-bin of t bea®sl Es*/

t.wid=(Ss, ES)

add [Ss, pa] to S, where [w, pa] O S [0 E has the largest bin-id w < Ss

add [Es, pa] to S, where [w, pa] O S [0 E has the largest bin-id w < Es

/* the update operation depends on the aggregate-functioexdample, if
aggregate-function = count, the update operation is +1 */

for each [w, pa] in SO E where Ss <w <Es
update pa using t

ProcessPunctuation(p)
Output each [w, pa] in S with w < p.wid and remove it from S
Remove each [w, pa] in E with w < p.wid and w # -co

Figure6-7 The Aggregate operator implementation for slide-by-twielows

of memory usage. However, implementation and testinghisf variant remains as

future work.
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6.1.4.2 Variations

The algorithm for slide-by-tuple windows in Figure 6-7 carekiended to support the
two variations of slide-by-tuple windows discussed in $echi.1.2, again with the
cost of maintaining partial aggregates for additional égteNo tuples need to be
retained and reprocessed. The Bucket operator for th@seatvations is the same as
for slide-by-tuple windows. For the variation that séidever theseg-num attribute, the
ProcessTuple() function in the aggregate operator still maintainsiplaaggregates for
two bins, Ss and Es for each tuplebut it stores thé.seg-num with the two partial
aggregates for it, e.g., [Ssseg-num, pa]. The ProcessPunctuation() function only
outputs the aggregates for the required window extentseXxample, if theSATTR
parameter iseg-num and the SLIDE parameter is 3 tuples, only aggregatessegth
num as a multiple of 3 are output. Similarly, for theiaton that slides over the tuple
count of the logically-ordered input stream oRATTR, the ProcessTuple() function
stores the current rank (based RATTR) of t with the partial aggregates, e.g., [Ss,
tup-rank, pa]. The stored tuple rank may be updated as a new tuple s¥rfoe
example, if a tuple is delayed, its arrival will cause the incrementuptrank of bins
for tuples with RATTR value greater thars.RATTR. The ProcessPunctuation()
function only outputs the aggregates for the required wineltents. For example, if
the SATTR parameter isup-rank and the SLIDE parameter is 3 tuples, only aggregates
with tup-rank value as a multiple of 3 will be output.

In summary, just as for slide-by-tuple windows, the Wilplementation for these
two variations handles disordered input naturally, at et of maintaining partial
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aggregates for two bins for each tuple. In particularfHersecond variation, although
its wids() function definition usesank() over theRATTR attribute, which potentially
requires global information over the entire streanmgupunctuations removes this
“sort” requirement in the implementation. Comparing Yde® implementation to the
buffering implementation, the major benefit of WiDlasver latency for out-of-order
input, because WID does not require an ordered stream. Wet ¢ixaethe CPU usage
of WID and the buffering implementation are comparablke,they require simlar
amount of processing for each tuple. For example, Her decond variation, the
buffering implementation may need to order the inputastreand the WID
implementation needs to get the rank for each tuple, legthiring similar processing

per tuple.

6.1.5. Performance Study of WID

We tested the effectiveness and efficiency of the Wiiplementation by conducting
three sets of experiments: 1) The first set of expamisicompares the execution time
performance for sliding windows using the WID implementatemd the buffering
implementation—the standard implementation for window eg@fion, which
materializes each window extent and computes the aggmgatd; 2) the second set
of experiments compares the latency and accuracy of WiiBus the buffering
implementation with slack for evaluating queries ovegasns withband disorder; 3)

the third set of experiments compares the latency aodracy WID versus the
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buffering implementation with slack for evaluating queme®r streams withpl ock-

sorted disorder. We will introduce band disorder and block-sorted disordgt. n

Our experiments were conducted on an Intel® Pentium®48 RIHz machine,

running Linux 7.3, with 512MB main memory. The data size feragkperiments was

approximately 35 MB.

6.1.5.1.Experimental Data Generation

We implemented a data generator to generate tuples mdtieaising timestamps

loosely based on the XMark data genergi®], which generates online auction data

in XML. The first experiment uses the data in generatelgr. The second and third

sets of experiments use data sets with band disorderbltk-sorted disorder,

respectively.
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Figure 6-8 Band Disorder—the timestamp of tH Backet in a NetFlow vs. the start

timestamp of the NetFlow
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Band disorder and block-sorted disorder are two types ofddisgattern that we
observed from network flow data from the the Abilertzs€vatory, a consortium that
uses a high-performance (Internet2) network to study addaimternet applications
[1]. In networking terminology, a network-floviyetFlow, is a connection between a
source IP address and port, and a destination IP addregond flow comprises
one or more packets, which each have a timestamp amd (aimong other
information). Each NetFlow has a start and end timeich are the mininum and
maximum timestamps of packets in the NetFlow.

Band Disorder: Figure 6-8 shows the timestamp of tiepficket in a NetFlow versus
the start timestamp of the NetFlow. The relationshigveen &-packet arrival time
and flow-start time is near linear, but network delagd packet retransmission result
in a “band” of disorder—the dotted lines in the figure sholesband. We call the
disorder pattern shown in Figure @&nd disorder. Many stream systems that handle
disorder assume band disorder and handle it with #io& shechanism.

Block-sorted Disorder: Figure 6-9 shows a scatter plot of the stream dfetiFlow
records emitted by a router in the Abilene NetwdiK, which exhibit another disorder
pattern that we call block-sorted disorder. A NetFlowordcis associated with a
NetFlow and can be seen as tuple that summarizes eétfiowl The x-axis is the
position of the packet in the stream, and the y-axideid=low start time. The graph
shows an ascending set of disjoint blocks, with datatpacattered apparently at
random in each block. The reason for the surprising shiffesograph is that each
minute the router outputs all its NetFlow records. As fint, it purges its cache of
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NetFlow records and starts over. Thus a block repredemtetords emitted during a

cache purge; the order within a block may be related tsttheture of the router hash

table. Note that a NetFlow that spans a block boundamgpi®sented as two separate

NetFlow records, one in each block. A fixed bound on disdsdeot a good match to

the disorder pattern shown in Figure 6-9, and thus the slackanism will not match

it well. Setting the bound to less than a minute willpdroany tuples; setting the

bound to a minute will accommodate the disorder but undulydelult output. For

example, if the window boundaries match the block bouesathe disorder here can

be well absorbed within individual window extents and thesults need not be

delayed at all. What makes more sense is for theerdot output a message—a

punctuation perhaps—to indicate it has completed a cache purge.

To simulate a band-disorder distribution, we first tamk data sequences (each of
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Figure6-9 Block-sorted Disorder—the arrival position of a Net¥igs. it start time
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them with band disorder) resulting from applying a netwanélysis tool[48] over

TCP header traces. Each data item in the sequencesiles@amp attribute, which is
used for the windowing attribute. To get a long data sequemeeconcatenated
randomly chosen copies of the ten data sequences. Ti@anpunctuations from the
data source, we pre-processed the disordered data an@dnpgerictuations into the
data. To simulate the block-sorted-disorder distribution,diveded the tuples into
segments of equal length on the timestamp attribute, thed randomized the

positions of tuples in each segment. We also add punatueter each “block”.

6.1.5.2.Experimental Results

We present the results of the three different expetsnearthe NiagaraST system. The
experiments used variations of Q6-1, and varied the pasasnatcording to Table

6.1. In Table 6.1, Slack Approach includes two flavors ostaek mechanism that we
will introduce in the second and the third set of experimen

Table6-1 Experimental Parameters

Aggegate | .. ] LRANGE SLIDE
Exp. Eunction Disorder| Slack Size Slack Approach
1 Max none 0 4000 rows varies
: consistent
2 Average band varies generous 64 s 6.4s
block- . .
3 Count sorted varies consistent 600 s 60 s

Execution Time Comparison of WID versus Buffering:For Experiment 1, we used
the ordered data set and measured the execution timeotassing the WID

implementation and the buffering implementation. Theasured time is in
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milliseconds. For the window specification we used WRTF row-num, RANGE =
4000 rows, and SLIDE between 1 and 4000 rows. Thus, the nuohbsmdow
extents to which a tuple belongs varies between 4000 ahad the experiment, each
query is executed for 8 runs and the median of the exctitio of the 8 runs is
reported here. For each experiment, the system scanggalr@d data-files to simulate
streams and thus queries in the experiments were exeautbe full CPU speed.
Therefore, the execution time comparison also dyemtkrelates to CPU-usage and
latency performance comparisons.

Experiment 1 (Figure 6-10(a) and (b)) shows that the WID cagmbr in general has
lower execution times than the buffering approach; thapewsison favors the WID
approach as the ratio of RANGE to SLIDE increases. Eigdt0(b) is a zoomed-in
version of Figure 6-10(a), and includes a horizontal liaé¢ shows the execution cost
of scanning the input stream, which is the measured tinseasfning the whole data

set.
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Latency-Accuracy Tradeoffs for Band Disorder: Recall that the buffering
implementation uses slack to handle disorder. For Expeeri 2, we used the band-
disorder data set and measured the latency-accuracy ftraodetwveen using
punctuation and two types of slackonsistent and generous. Consistent slack and
generous slack are our names for two versions of slaoidfa the literature [4, 5].
Consistent slack requires that if a late tuple mustrbpped from one window extent,
it must be dropped from all extents in which it partiogsatregardless of whether it is
late for those other extents or not. Generous sladesnao such restriction. We use
mean error percentage as the accuracy metric for Hpieriement. The aggregate
function used in this experiment is average, and mean percentage is computed as
the absolute difference of the true average and thageeeturned by the query, as a
percentage of the true average, over each window extemt;the average of these
percentages over all extents is computed. Latency isureg by the wall-clock time
between the arrival of a punctuation and the outpuh®fresult that the punctuation
covers, and we report the average latency over alltsestithe query. Here, wall-
clock time and logical query time are not comparablealise queries are evaluated
over streams that are emulated by scanning data files iagdriST executes them at
maximum speed. The maximum disorder in the data set se8dhds. For consistent
and generous slack, we vary the amount of slack from 0.82ndse through 3.2

seconds and we use RANGE = 64 seconds, and SLIDE = 6ddseco
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Figure 6-11 Latency-Accuracy (mean error percentage) tradeofbdéod disorder:
WID vs. Buffering with slack (Oms, 320ms, 640ms, 1280ms, 256888&)ms along
the x-axis) for a window aggregate query (RANGE 64 secd®ld)E 6.4 seconds;
maximum input disorder is 3.2 seconds

Experiment 2 (Figure 6-11) shows that as slack increases,decreases and latency
increases, as expected. It also shows that externaluation has better latency and
accuracy than either slack mechanism. In addition, geseslack has significantly
better accuracy at comparable latency when comparexhgistent slack.
Latency-Accuracy Tradeoffs for Block-Sorted-Disorder: Experiment 3 is similar to
Experiment 2, except that we used block-sorted disorder lattk duration 490
seconds, which means the maximum disorder is up to 490dsecdre varied the

amount of slack from 0 to 600 seconds and used RANGE = 600dsecand SLIDE =

60 seconds. The aggregate function used in this experim@atuist and we use the
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percentage of wrong answers as the accuracy metric hfer experiment. The
percentage of wrong answers is computed as the numberoafy wesults over the
total number of results that the query produces. In cstinteaExperiment 2, where
error decreases and accuracy increases as slack in¢rieaselwck-sorted disorder
there is no linear relationship between slack and latdrmythe block-sorted-disorder
data set there is one slack value that has the hestya at the optimal accuracy, as
shown in Figure 6-12, which is determined by the relationsétiwden block size and
window size. In our experiment, the optimal slack is 48donds. When slack is less
than optimal, latency is essentially independentaxdks|As slack increases above the
optimal, latency jumps dramatically. In this caseyauld be difficult to use slack to
trade off the latency and accuracy of the query as oightnmope to do. This
experiment also shows that punctuation has better jat@nd accuracy for block-

sorted disorder than any of the slack values used.
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Figure6-12 Latency-Accuracy (percentage of wrong answer) trad@olflock-sorted
disorder: WID vs. Buffering with slack (0s, 54.4s, 109.1s, 21823,3s, 434.2s,
490.9s, and 600s along the x-axis) for a window aggregate quélfGR 600
seconds, SLIDE 60 seconds); maximum input disorder is 490dscon

Obviously, the memory usage of the WID implementation liysaampares favorably
to the buffering implementation. We show a comparisibthe memory usage of
order-insensitive implementations of window aggregationsugerthe buffering

implementation in sectior®.3, when we present our adaptive implementation of

window aggregation.

6.2. The Paned-WID Optimization
The computational cost of query evaluation affects CRigeisnd thus the throughput

of a stream system. In the following, we present atinigation technique for
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evaluating sliding-window aggregate queries. This optimizati@duces the
computation cost by sub-aggregating the input stream and bpglsab-aggregates
among multiple window aggregate computations. The streasul-aggregated by
non-overlapping sub-sub-streams, which we patles;, aggregation over the pane-
aggregates is used to compute window-aggregates. The paned ajgiimzan be
applied to the buffering implementation, as well.

In the WID implementation of sliding-window aggregatiomcle tuple belongs to
multiple window extents and thus multiple window aggregadre updated with the
tuple. For example, without using panes, to evaluatedk@nsing query Q6-2, four
window aggregates are updated with each tuple, as each tuplgbates to four
window extents. As the ratio of RANGE over SLIDE rimases, the number of
window aggregates updated with each tuple increases. Updatiwgwiaggregates
can be expensive, especially when the the hash talalges

Q6-2: “Find the maximum packet size for the past 4 minutes and update the
result every 1 minute.”

SELECT max(length) [RANGE 4 minutes, SLIDE 1 minute, WA ts]
FROM Main

100

www.manaraa.com



W.

2

W3

Windows

Wy

Figure6-13 Panes for Query 6-2 with RANGE 4 minutes and SLIDE 1 mieaish
pane is a 1 minute sub-stream

Figure 6-13 illustrates how panes are used to evaluate QeZXtream is divided into
1-minute non-overlapping panes based on the windowing attrits;itand each 4-
minute window is composed of four consecutive panes. In &iget3,w; — ws are
window extents andvs; is composed of pangs — ps. Each pane contributes to four
windows; for exampleps contributes tow, throughws. To evaluate Q6-2, we
calculate the maximum for each pane; the maximumdoh a&indow is computed by
finding the maximum of the maxima of the four panes daettribute to the window.
For example, the maximum for window is computed by finding the maximum of

the maxima of pangs throughps.
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We note that panes are not always beneficial. For gbeanfor slide-by-tuple
windows, panes do not save work because sub-aggregatiomatoleslp when each
pane contains only one tuple. In general, for a slidingdoiv aggregate query, the
benefit of using panes increases as the number of tupdaxh pane increases (i.e., as
the average data arrival rate increases).

In the following, we first present the basic structuréhe paned-WID evaluation of
sliding-window aggregation. Then, we discuss in detail howepaare used for

window aggregate queries with different types of aggregattiduns.

6.2.1. Evaluating Queries with Panes

To evaluate a sliding-window aggregate query using panes, thg iqudEcomposed
into two sub-queries: a pane-level sub-query, PLQ, andndowi-level sub-query,
WLQ. The PLQ is a tumbling-window aggregate query; it sepsutdie input stream
into non-overlapping panes, and produces an aggregate fopaaehThe WLQ is a
sliding-window query over the result of the PLQ that nresuvindow aggregates.
Figure 6-14 shows the query plan for Q6-2 using panes. Q6-Zanpesed into a
tumbling-window max for the PLQ, consisting of Buckahd Max for its execution
plan, and a sliding-window max for the WLQ, consisting atBef and Max for its
execution plan. The PLQ produces a pane-maximum for paich. The aggregates
that PLQ outputs have @d attribute, which is the window-id of the aggregate. The
WLQ runs over the stream produced by the PLQ, usingpitieattribute as the
windowing attribute, and every minute computes the maximwuer the last four
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minutes. Typically, PLQ can greatly reduce the datamelwf the input stream; for
example, for Q6-2, each window (i.e., a 4-minute sudasty) of the WLQ contains

only four tuples, corresponding to four panes.

T (wid, max)
' WLQ <11, 52>wa :
Max?(length)
i GROUP-BY wid i
T ( pid, max, wid
! <11, 52, 11> pa |
! Bucket’ :
E RANGE =4 SLIDE =1 :
WA =pid
T {"""("riia',"rhé'i y |
i PLQ Maxiength’ 11, 52 > pa i
group-by pid !
T ( srclP, length, ts, pid) !
: <202.10.1.2, 52, 12:10:30,> t
Bucket*
i RANGE =1 min, SLIDE =1 min |
! WA = ts i
: ( srclP, length, ts ) :
. T____<__2_Q_2_-_19_-_1_-_2_,____5_2_1____1_2_1_1_Q_>__t_____=

Figure 6-14 Paned-WID for Q6-2 (RANGE 4 minutes, SLIDE 1 minu)Q is the
pane-level sub-query, and WLQ is the window-level sub-query

In order to use panes, we need to split the originainglidindow aggregate query
into PLQ and WLQ, and thus we need to determine the wirgpmaifications and the
aggregate functions for them. The PLQ and WLQ aggregate dasctiepend on the

aggregate function of the original query. For exampla, & sliding-window
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maximum, both the PLQ and WLQ use the max aggregatepbuat $liding-window
count, the PLQ is a count, and the WLQ is a sum. Tihdaw specifications of both
sub-queries are also determined by the window specificafitre original query. The
size of the panes for the PLQ is the largest possib&for sub-aggregation such that
the sub-aggregates can be used by the WLQ to compute windggregates.
Therefore, the RANGE, as well as the SLIDE, of HQ is the greatest common
divisor of the RANGE and SLIDE of the original quepane-range = pane-dide =
GCD(RANGE, SLIDE). For example, for a window aggregatgh wvRANGE 9
minutes and SLIDE 6 minutes, its pane size (i.e., the ®BNnd SLIDE for its PLQ)
is 3 minutes. Each window extent of the original query @nst3 panes and
consecutive window extents overlap by 1 pane. Thus, folth® of the query,
RANGE is 3 and SLIDE is 2, defined on tha attribute of the PLQ results. The
WLQ has the same RANGE and SLIDE as the original qubty, uses pane-
timestamp as the windowing attribute. The number of pgpes window is
RANGE /pane-range. Note that both the PLQ and WLQ are evaluated with Vi
thus using panes does not require any new query operators.

Using panes generally reduces computation cost. Only aeswigtlow aggregate is
updated for each input tuple in the PLQ. Although multipladow aggregates are
updated with each pane-aggregate in the WLQ, the ovemalbutation cost for the
guery is normally reduced, because the number of panewimdaw is usually much
fewer than the number of tuples in a window. For exampl@uery 6-2, each input
tuple is processed once to produce a pane-max. Thenpaaehmax is used in the
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computation of four windows, because each pane-max cotasilio four windows.
Normally, the number of tuple accesses here is muechtthas that of accessing each

input tuple four times.

6.2.2. Different Types of Aggregates
In the following discussion we introduce two properidsaggregate functions that

affect the paned evaluation of sliding-window aggregates.

6.2.2.1.Holistic
Suppose an aggregate functibnover a dataseX can be computed from a “sub-

aggregate” function L over disjoint datas¥is X, ..., Xn,, where U X; =X and a
O<i<n

“super-aggregate” function S to compigX) from the sub-aggregatds(X), 0 <i <
n.

F(X)=S{L(X)|0<i<n)}
As defined by Gray et aJ23], an aggregate functiof is holigtic if for all possible
sub-aggregate functionk(), there is no constant bound on the size of g®reeded
to store the result af(). For example, median, quantile, and mode anstiw|
We call aggregates that are not holisbounded aggregates. The term bounded
encompasses the distributive and algebraic terrinsedeby Gray et al[23]; but the
distinction between distributive and algebraic mnecessary for us. For example,

average is bounded: The functibf) records count and sum; the functi§ adds the
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respective components and then divides to procheglobal average. Other common
examples of bounded aggregates include count, mi,sum, variance, and center-

of-mass.

6.2.2.2.Differential Aggregate Functions

We define the differentidlproperty for aggregate functions. Assume therstexio
datasetX andY such thaty [J X. Aggregate- is differential if there exist functiong,
H andJ that satisfy the two conditions: E(Y — X) can be computed from(Y) and
L(X) and 2)F(Y) can be computed frotr(Y — X) andL(X) as below:

F(Y=X)=H(L(Y), L(X))
F(Y)=J(L(Y - X), L(X))

We also require thalt. (X)| < .
For example, count is differential as shown below.

count(X'=X) = count(X") —count(X)
count(X") =count(X'-X) + count(X)

Based on the sub-aggregate functignwe further categorize differential aggregate
functions. If the result off can be stored with constant storage, we sayRhsfull-
differential. For example, count, average and variance ardlifidrential. A full-
differential aggregate function must be boundedhéf result ofL cannot be stored
with constant bound, we say tHats pseudo-differential, for example, a heavy-hitter

aggregate that finds frequently occurring items pseudo-differential, because

3 Differential is similar to what Arasu and Widom tesabtractable [5].
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although arlL function exists for heavy-hitter, the result oé th function cannot be

stored with constant storage.

Next, we discuss using panes to evaluate boundedl lalistic aggregates,

respectively. We also discuss the effects thatifferential property and the number

of groups have on evaluating sliding-window aggtegpueries.

6.2.3. Paned-WID for Queries Using Bounded Aggregate Fonst

For a differential aggregate function, we can exple differential property to further
reduce its evaluation cost by computing the agdeefgat the current window based on
the aggregate of the previous window. For exampl€6-2, to compute the count
over ws as shown in Figure 6-13, we can wseint(ws) = count(w,) — count(p) +
count(ps). To leverage the differential property, the aggte operator (in the WLQ)
needs to handle tuple deletion, as well as tuslertion.

The GROUP-BY construct introduces another factog, number of groups, into the
space requirement and computation cost. Intuitjuélg more groups, the more space
and the more computation are needed to evaluaiguéng. The following query Q6-3
is a sliding-window aggregate query with GROUP-BY.

Q6-3: “Count the number of packets from each source IP for the past 4
minutes and update the result every minute.”

SELECT count(*) [RANGE 4 minutes, SLIDE 1 minute, WA ts]
FROM packets
GROUP BY srcIP
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Using panes to evaluate Q6-3, every group in eacte s aggregated into arelP,
pane-count, pid> tuple by the PLQ. Assumin@ groups per pane, for the WLQ, a
window contains 4& tuples, as there are four panes per window. Thabeu of
groups per panés;, is important because for each group the PLQ coctst an output
tuple and the WLQ processes an input tuple. Inettteeme case where every group
contains a single tuple, the PLQ cannot reducentiaber of input tuples for the
WLQ and panes provide no benefit. In fact, for armed aggregate query with a
GROUP-BY, the size of the required space is bourmhdyl if the number of groups is
bounded.

Taking both the number of groups and the diffeenproperty of the aggregate
function into account, we express the computatimost per window-aggregate of
using panes for sliding-window queries with norfatiéntial and differential
aggregate functiongimep.np, andTimepp. In the following discussion, we use count
and maximum as the representative for differerdiadl non-differential aggregate
functions, respectively.

Timepnp =a*T/P+b*G +c*P*G (Eq. 6.1)
Timepp=a*T/P + b*G + 2*c*G*SLIDE/GCDRANGE, SLIDE) (Eq. 6.2)

In the two formulas above is the PLQ’s cost to process an input tuflds the
PLQ’s cost to generate an output tuple, anmslthe WLQ’s cost to process a tuple (to
add a tuple to a window (e.g., to update the menathaggregate with the tuple) or to
remove a tuple from a window (e.g., to subtract thple from the maintained

aggregate for queries using differential aggredatetions such as countJ, is the
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number of tuples per window? is the number of panes per window, aads the
number of groups per pane. In Eq. &82,DE/GCD(RANGE, SLIDE) is the number of
panes per slide. For example, when range is 9 esramd slide is 6 minutes then the
pane size is 3 minutes, so the number of panes glide is 2. Thus,
2*c*G*SLIDE/GCD(RANGE, SLIDE) is the cost to compute the aggregates for all
groups in the current window based on the aggregatthe previous window, that is,
the cost to expire old panes and the cost to addoames.

The cost per window of evaluating sliding-windowegas with non-differential and
differential aggregation functions without usingnpa, Time.np and Timey.p, are as
follows, wherea' is the cost to process each tuple (to insert k& tigpor to remove a
tuple from a window).

Timey.np=a*T (Eq. 6.3)
Timew.p = 2*a™* SLIDE*( T/RANGE) (Eq. 6.4)

Without using panes, the WID implementation folidirsg-window query with a non-
differential aggregate function such as maximumdee® use every tuple in the
window extent to compute its aggregate, just as &@§. indicates. The WID
implementation cannot directly leverage the difftiad property, because leveraging
the differential property requires processing wivdextents sequentially. As we
assume linear punctuation, pane results are prddacarder, and thus WLQ receives
an ordered stream. Eq. 6.4 shows the computatioostl of using the buffering
implementation to evaluate a sliding-window querithwa differential aggregate

function, such as count. The buffering implementaitan compute the count for the
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current window extent based on the count of the/ipuvs window extent by adding
one to the previous window-count for each new tuplethe current window and
subtracting one for each expired tuple.

Comparing Egs. 6.1 to 6.3, and 6.2 to 6.4, we baethere are some situations in
which using panes might not provide performancengai) When the number of
groups per pane increases above a certain threshmad) when the number of panes

per window is too small, for example, one panevaadow.

6.2.4. Panes for Queries Using Holistic Aggregate Funetion

Similarly, for holistic aggregates, the pre-progggsf panes can also be shared by
multiple windows to reduce computation cost. We besavy hitters as a holistic-
aggregate example, and use a algorithm that idasita that used by Gigascope to
evaluate heavy hitters.

In Giagasope, to evaluate heavy hitter queries agctiind the IP sources that most
frequently generate packets”, multiple alternatises available for sub-aggregate and
super-aggregate paif$3]. One option is that the sub-aggregate useash bable to
record the packet-count for each IP source, antthee super-aggregate uses the hash
table entries to update its data structure, callekktch, for estimating heavy hitters.
Although Gigascope only evaluates tumbling windows, can use a similar method

to evaluate sliding-window heavy hitter queriesisas Q6-4.
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Q6-4: “Over the past 10 minutes, find the srclPs from which the number of
packets received is greater than or equal to 5% of the total number of packets
received; update the result every minute.”

To evaluate Q6-4, the PLQ maintains a hash taltle (siclP, count) hash entries. At
the end of each pane, the non-empty hash tablemire output. The WLQ buffers
and uses each hash table entry to update the skefoch multiple windows. Using
panes, the PLQ compresses all the packets fromraestP to a single hash entry and
reduces required buffer spaces, similar to the aggvegation in Gigascope. In
addition, each hash table entry is used by multpledows, and thus reduces the
overall computation cost. Similar strategies carapplied to evaluate other sliding-
window holistic aggregates using panes.

We note that in order to use panes, differentidisho aggregate functions need
necessarily be pseudo-differential. Consider helaitters: The counts recorded by
hash table entries can be summed or subtracteds, Tha sketch of the current
window can be constructed based the sketch of iév@iqus window; but there is no
bound on the number of hash entries for each pEs¢he number depends on how

many groups are represented in the pane.
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6.2.5. Performance Study of Paned-WID

We experimentally compared the execution of slidingdow aggregate queries with
and without panes. Our experiments were conductedrolntel® Pentium® 4 2.40
MHz machine, running Linux 7.3, with 512MB main mem Our data generator is
loosely based on the XMark data gener§i@j, and the data size for the experiments
was approximately 15.2 MB. We calculated executiore by measuring the query
execution time and then subtracting the cost ofirsicg the input stream, to focus on

just the aggregation cost.

E 2 Pane/Win
5 Pane/Win
O 10 Pane/Win
[ 20 Pane/Win

Performance Ratio
(Paned-WID/WID)

10
Number of Tuples Per Pane

Figure6-15 Execution-time ratio of the Paned-WID vs. WD for a sliding-window
maximum query (varying the number of tuples perepand the number of panes per
window)

In our experiments, we varied the RANGE and theDH_lparameters of a sliding-
window max query, Q6-2, effectively varying the rhuem of tuples per pane, and the
number of panes per window (i.e., Pane/Win, as shbythe different columns of

each group in Figure 6-15). Figure 6-15 shows #i® rof the execution time using
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panes over the execution time of the WID implemiotawithout panes. For
example, we see that at 20 tuples per pane andés geer window, the paned option
takes about 30% of the time of the non-paned opiiéa conclude from Figure 6-15
that using panes has better execution-time perfacenghan the original approach in
many cases.

We expect that the memory usage of Paned-WID wilsimilar to that of WID, as
both of them maintain partial aggregates. The Ph®aned-WID only maintains one
aggregate for each group. The number of aggreght¢sWLQ maintains for each
group is the same as that of WID if SLIDE evenlyidiés RANGE; if not, WLQ

needs to maintain more partial aggregates than féfiBach group.

6.3. The AdaptWID Implementation

Memory performance is important for processing higlume data streams.
Compared to the buffering implementation, the WiBplementation is often more
memory efficient because maintaining partial aggteg normally requires
significantly less memory than buffering tuples. wéwer, this memory-usage
difference is directly dependent on physical strgzoperties. For example, consider a
network-packet stream with the simplified schema<sfclP, destIP, ts> and the
following window aggregate query, Q6-5, with thend¢istamp attribute of the packet
streamfs, as the windowing attribute (WA).

Q6-5: “Count the number of packets from each source IP for the past 5
minutes; update the result every 1 minute”
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SELECT srclP, count(*)

[RANGE 5 minutes, SLIDE 1 minute, WA ts]
FROM M1
GROUP BY srclP
The buffering implementation maintains a buffebahinutes of tuples (i.e., a window
extent) at all times. At the end of each minuteoinputes and outputs the number of
packets from each srcIP over the buffered tuplas pairges the one minute of expired
tuples from the buffer. The WID implementation mains the number of packets
from each source IP for each active window extBot. Q6-5, if the input stream is
ordered, there are five active windows at a timee tWID implementation
incrementally computes the number of packets fraohesource IP for the five active
window extents. At the end of a window extent, WD implementation outputs the
aggregates for that window extent and then purbeset aggregates. Although the
WID implementation is normally very memory efficiethe buffering implementation
may use less memory for a given srclP when thetigfream is very sparse. For
example, if some group of Q6-5 contains only or@etevery five minutes, the WID
implementation needs to maintain 5 partial aggesgatwhereas the buffering
implementation would only buffer one input tupler fthe group. Thus, the WID
implementation is memory efficient when groups dease; that is, each group has
many tuples per window. If there are too many spareups, the WID method may
have excessive memory overhead compared to thermgfimplementation. For ease
of presentation, we term the buffering technique gre WID implementation dszy
andeager aggregation, respectively.
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Window-aggregate evaluation may benefit from a igdybof eager and lazy
aggregation. Massive data streams can often extaba skew, with a tail of many
sparse groups in addition to a small number of @@umeups. Data-distribution skew
(e.g., a power-law distribution in group densityhich often occurs with high data
volumes, may lead to a large proportion of sparsegs. For example, distribution of
network packets at a router is highly skewed, witlarge number of packets coming
from a small set of IP addresses, but a few paadatsng from each of many other IP
addresses. For some critical scenarios, such asaldéiservice attacks, the
percentage of small groups increases dramatidattycessing sparse groups with lazy
aggregation and dense groups with eager aggregat@nlead to better memory
performance than either lazy or eager aggregationea Further, stream systems
generally cannot statically differentiate sparseugs from dense groups, and the
character of a group can change over time. For pkgnthe number of bids for an
online auction item may change dramatically overeti An auction might not receive
many bids until its expiration time is approachinfaus, the system needs to
determine dynamically at execution time which aggt®n method to use and
provide an adaptive mechanism to switch betweemadlgeegation methods.

We examine stream properties that affect memorigieficy of window aggregation
and propose an adaptive implementatiagpt\WID, that combines the best aspects of
the buffering implementation and the WID implemeiota to improve memory

efficiency for input streams with skewed data distions, even if the distributions
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vary over time. AdaptWID adapts the aggregationhagton a group-by-group basis
to cope with time-varying data skew.

In the following, we first discuss input stream jpecties that affect memory efficiency
of the lazy and eager implementations and use tieemodel their memory usage.
AdaptWID uses this memory-usage model to selectngnevaluation algorithms at
run time. Then, we present the AdaptWID implemeotatOur experimental study
verifies that the adaptive algorithm improves memaisage, while maintaining

execution cost and latency comparable to existmgadaptive implementations.

6.3.1. Stream Properties and Memory-Cost Estimation

To allow the aggregate operator to choose betwagereand lazy aggregation, we
need to estimate the memory costs of both implesenss for each group. In the
following, we discuss stream properties that magcaf memory usage and then
present memory-cost estimates for lazy and eagereggtion based on these
properties. We assume input streams may contagn fdatn multiple sources, may
contain out-of-order tuples and are punctuated. Titetrics that we propose for
measuring stream properties are defined relativ@eonvindow parameters (RANGE,
SLIDE, WA). Note that an ordered stream is a spe@ae of our stream model and
the discussion here applies.

Stream Volume: Stream volume describes the amount of data in ttearm. We
define stream volumeyol, as the amount of data per unit of the windowitighaite.
For example, if the unit of the windowing attribuseseconds, thewol is the number
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of tuples with windowing attribute values withinga&ven second. Notice that stream
volume is determined only by data in the streamis itndependent of the stream-
arrival pattern, and is different from the real¢irstream-arrival rate. Stream-arrival
patterns and rates are affected by data transmjsaied may fluctuate even when
stream volume is stable.

Arrival Order: Out-of-order tuples delay the completion of windextents in which
they participate and thus increase the number oflow extents open at a time. We
measure a stream’s arrival order by window-extemaion, wed, which is defined on
the windowing attribute and is the length of theiqu that a window extent is active.
Let the high-watermark of a data source be the largest value of the wuap
attribute seen so far in the stream; and letidixewatermark be the smallest value of
the windowing attribute that might still appear the stream. (Note that low-
watermark indicates the progress of the stream.)défne thewed of a window
extent as the difference between the low-waterraithe start of the extent and high-
watermark at the completion of the extent. An eix&arts on the arrival of the first
tuple belonging to the extent and completes orathgal of the punctuation covering
(closing) the extent. Intuitively, a longeved indicates more window extents open
simultaneously.

Arrival-Time Skew: When the input stream consists of data from meltigata
sources, skew in the arrival times of different rees can cause disorder in the
combined streamArrival-time skew describes the time skew among data sources. We

measure the synchronization of two data sourcesadt instant byffset, which is the
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difference between the high-watermarks of the sssirAs we will see later, knowing

the offset helps to better estimate the state reopgnts of window operators.

6.3.2. Memory-Cost Functions
In general, for aggregation, the total amount @itestthat must be maintained is
determined by the number of open window extentsta@gmount of state maintained
for each open extent. An open window extent istbaé has started (with its first tuple
arrival) but not completed (with covering punctoatiarrival). AdaptWID needs to
process each group individually, and thus requinesory-cost estimates for window
aggregation for each group.
The memory cost of eager aggregation is determyetthe number of open window
extents and the size of the partial aggregate.rGilie duration of a window extent,
wed, the number of open window extentswed/SLIDE. The memory cost of eager
aggregation is given by Eq. 6.5 below, whaggr is the size of a partial aggregate.
MCeger =aggr * (wed / SLIDE) (Eq. 6.5)
The memory cost of lazy aggregation is determingthb number of buffered tuples.
Consider the sub-stream for one group and assuatethib stream volumeyol, is
relatively constant over the duration of a windoxteat. Eq. 6.6 below estimates the
memory cost for lazy aggregation, whéup is the size of an input tuple.
MCiazy =tup* vol * wed (Eq. 6.6)
However, if the input to the aggregate is the urddmultiple sources, arrival-time

skew of these sub-streams affects the estimatioM@f,,. Figure 6-16 shows the
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synchronization of three data sources, A, B, andsSume the sub-streams from each
data source arrive in order. The points e@erd endmark the active periods of a
window extent fori = A, B, C. The close point marks the arrival oé ghunctuation
covering this window extent. Thus, the intervalvien openand the close point
corresponds to thewed for each source. In this example, tuples in soucarrive
earlier than B and C, and offgefy and offset_.a respectively, indicate the skew of B
and C relative to A, respectively. The duratiortled whole window extent is marked

by duration, which is the same as thved for the earliest source, A.

open | o
offset;_>A open T
offse_a open

endk T duratior

_________ ‘?E‘Pb_'_'_____‘?f‘fi_?:__i_

closey close v closey

A B C

Figure6-16 A window extent for unsynchronized data sources Ang G

The input tuples that lazy aggregation needs to buffer in@iidee tuples within the
wed period of each data source. Assume twt is the volume of stream The
number of tuples that lazy aggregation buffers is

(vola * weda + volg * wedg + volc * wedc)
Here, wed, equals the duration of the full window extent weeds is (wed —
offsetg—.a), and wed is (wed — offsetc_.). Letting vol equal Yol + volg + volc), the
number of tuples buffered by lazy aggregation is
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The general formula fon data sourcesg;, S, ..., S is as follows, assuming th&t is
the earliest-arriving data source.
numTuples = [vol *wed = > voly * offsety SLJ (Eq. 6.7)
K=S,..S,
The memory cost of lazy aggregation is then given by6E].
MCiazy :tup[vol *wed — > voly * offsety ﬁSlJ (Eq. 6.8)
K=S,..S,
Given the memory costs in Eq. 6.5 and Eg. 6.8 for eaggregation and lazy
aggregation, respectively, we derive a threshold comdiboindicate when eager is
preferred over lazy aggregation as shown in Eqg.\@®yol equalsvol * wed, which
we callwindow volume.

agar * wed .

winvol > —~
tup* SLIDE

3 voly *offsety s (Cond. 6.9)
K=S,..S,

The aggregate operator in the AdaptWID implementatiomnedgtmonitors the stream
properties used in Cond. 6.9 for each group, and triggers ttehswi between eager
and lazy aggregation for the group based on the thresbodtiton. The memory-cost
models for eager and lazy aggregation make it possiblditoags which will use less

memory for given input-stream properties.

6.3.3. The Runtime Switching Mechanism
Efficient runtime switching between lazy and eager aggmgais essential for

AdaptWID. The AdaptWID implementation actively monitdine stream properties of
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each group to estimate memory costs using the memory-nsadel, and based on
the estimates, it will switch between eager and &ggregation for a group. We first
discuss runtime switching in AdaptWID in this section,nti@resent the detailed
implementation in the next section.

Efficient runtime switching requires a low switching castl a short transition period.
In the following we discuss switching between eager amng d@gregation in either
direction for a single group.

Lazy to eager: Switching from lazy to eager aggregation is straightéod. The
aggregate operator uses the buffered tuples to construetl paigregates, and then
discards those tuples. Tuples arriving during the transitierpecessed immediately
without buffering.

Eager to lazy: Switching from eager to lazy aggregation is more chailhgndecause
we cannot reconstruct tuples from partial aggregates, noardighose aggregates
immediately. Therefore, during the transition in tthiection, we must maintain both
the partial aggregates computed so far and the tuple bofferefv input, until all
existing partial window aggregates are output. The numbgaxial aggregates for
each group is at least the number of window extentghinh each tuple participates,
which is determined by the window specification. For eXamp Q6-5, at least five
partial aggregates are maintained for each group. Out-of-nnples may increase the
number of partial aggregates that the query needs to mairiawever, for a
tumbling-window query, there will often be only one pardiggregate for each group,
and thus that transition cost is lower than thasholing-window queries.
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Leveraging panes. The overhead for switching from eager to lazy can ored in
both the length of the transition period and the am@finhemory usage by using
panes. For example, to evaluate Q6-5 using panes, a slichidgw count query with
RANGE 10 minutes and SLIDE as 1 minute, the query is spiita sub-aggregation
with a 1-minute tumbling-window and a sub-aggregation compliesdunt for a
window extent of the query by summing up the results ofstii®aggregations on
panes. The tumbling-window sub-aggregate will often have ehrlawer switching
cost than the original query. Although the super-aggregasioa sliding-window
aggregate, the number of tuples in a window extent of sagmmegation is bounded
(£ 10 in this case), and thus lazy aggregation is a good cfayiagg and adaptive

switching is not needed.

6.3.4. Implementation Details

Like the WID implementation, the AdaptWID implemerdat also has two parts, a
Bucket operator and an Aggregate operator. The bucket opesrétersame as in the
WID implementation. The aggregate operator processels g@aup independently
using either eager or lazy aggregation, and may switclvelet them during

execution. Switching is governed by the threshold conditiefined in Cond. 6.9,

which requires monitoring relevant properties of each graspye expect both data

and streaming properties to change over time in many apiphs.
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In the following, we present the AdaptWID implementati®@onsider a sliding-
window query, Q6-6, as a running example in the presentdtimaggregate operator
receives linear punctuation on tivel attribute.

Q6-6: “Computes the total size of the packets in the past 10 seconds for each
source IP and update the results every second.”

SELECT srclP, sum(len)

[RANGE 10 seconds, SLIDE 1 second, WA ts]
FROM packets
GROUPBY srclP
6.3.4.1.Monitoring Stream Properties for Switching
AdaptWID needs to determine the stream properties involmedhe threshold
condition for each group. Window volumeinVol, is determined by keeping a count
of the number of active tuples in a window extent facregroup. Window extent
duration,wed, is initiated to RANGE, and is updated at each punctuatitinthe wed
of the most recently closed window extent—the differemetween the high-
watermark of the completion and the low-watermarkhef $start of the extent. High-
watermark is estimated by the largéstvalue among the input tuples, and low-
watermark is estimated by the largesvalue of punctuations. If tuples are produced
from multiple data sources, the threshold is alsoctdte by the offset among the data
sources, and the stream volume of each data sourceariy applications, the offset
values among data sources are relatively static andecarebdetermined; otherwise,

the offset between any two sources can be estimatebebgifference between the

data sources’ high-watermarks. The stream volume ol elata source can be
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deduced by the number of tuples in a window extent from eéatzhsource divided by

the RANGE parameter of the window.

h | hwTime: 12.5
Has T‘T’lb € punctuatedwid: 11
hashkey _ wedi il _
201.1.1.5 win-id: 12 win-id: 13 win-id: 22
alt: eager  [? | tupleCnt: 126> | tupleCnt: 320> ... tupleCnt: 20
winVol: 500 sum: 330 sum: 630 sum: 15!
hashkéy Tuple Buffer B
202.5.4.1
alt: lazy ey
WinVoI; 1 5
hashkéy ,,—"/
202.10.2.5
alt: lazy
winVol: 3

Figure6-17 The AdaptWID Evaluation of Q6-6 with RANGE 10 second$ SnlDE

1 second—dense groups are evaluated with eager aggregatiopaasel groups are
evaluated wth lazy aggregation

6.3.4.2.Implementing the Aggregate Operator

As the Bucket operator of AdaptWID is the same as th&Wi®, we focus on the
Aggregate operator. The state that the Aggregate operaiotains for AdaptWID is
more complex than for WID. Figure 6-17 shows the dataciire and state that
AdaptWID maintains during evaluating Q6-6. To support both eagdr lazy
aggregation, the aggregate operator maintains a hash talded a tuple buffer.
Each group has an entrg, in H. For an eager groumg contains a list of partial
window aggregates, one for each active window exterthi@ngtoup. Notice that the
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counter tupleCnt keeps track of the number of tuples that will expire nviie
aggregate is released, instead of the total number of taples window extent. For a
lazy group,g indicates this status by the value of the fidigand all the input tuples
for g go in to the shared buffé.

The Aggregate operator also maintains the following $tateach data source (Figure
6-17 assumes a single data stregpojictuatedWid, the last punctuatedid value;
hwTime, the high-watermark time of the input stream, whiclnisalized to 0 and
updated to maxgs, hwTime) as each tuple arrives; andved, the duration of the last
completed window extent, which is initialized to RANGHEdas updated when the
window extent completes, with the difference of therenthwTime and the stream
high-watermark when the window extent starts.

The aggregate operator in AdaptWID processes two kinds of,inpptes and
punctuations. In addition, tuple arrival may cause a ¢ggayp to switch to eager, and
punctuation arrival may cause an eager group to switch yo W& discuss tuple
processing, switching, and punctuation processing separately.b

Processing Tuples:When a tuplet arrives, the aggregate operator hashes its
grouping values to locate its hash ergryrhere are three possibilities.

1. Entryg is null (i.e., no existing group fdrin H): Create an entry for a new lazy
group inH, with winVol = 1 and the lazy alternative selected. Buffer B. Note that
initially, every group is lazy.

2. Entryg contains a lazy group: Addo B and incremenivinVol.

3. Entryg contains in an eager group:
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3.1. Update all partial aggregatest’s group that matcltis wid range. If the

window-id of a partial aggregate equals the upper bountisofid range,

increment itgupleCnt. Incremenig.winVol.

3.2. Create new partial aggregateg ifor any later extents to whidhbelongs

in g. Notice that the countéupleCnt keeps track of the number of tuples that

will expire when the aggregate is released. Thus, izig&lpleCnt of a partial

aggregate to 1 if does not belong to any later window extent; otherwise,

initialize tupleCnt to 0, because if belongs to later window extents, it should

not be expired when the current aggregate is released.
Switching: Tuple arrival may switch a lazy group to eagemiiiVol rises above the
threshold. To switch, the Aggregate operator s@&nssing tuples in the group to
build partial window aggregates, and sets the status todjcat, of the group to
“eager”. For tuplet with wid rangei to ( + n), we update extents from
max{punctuatedWid + 1,i} to (i + n). Here,punctuatedWid records the window-id of
the last completed window extent, and thus windgmwnctuatedWid + 1 is the first
active window extent.
Punctuation arrival may switch a group from eager ty, ld&znput tuples expire and
winVol decreases below the threshold. When that happkesAggregate operator
marks the group as lazy and puts subsequent input tuples irdot Btill maintains
existing partial aggregates for the group until those aggregedgesll output. Such a
group is called a transitional group. If winVol for a grofipctuates around the

threshold, the group could oscillate between eager andTazgvoid such thrashing,
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we set two threshold values, one for switching from lazgager aggregation, and a

slightly lower one for switching back.

hwTime: 21.¢

punctuatedWid: 20 output
wed: 11
( srclP, sum, wid Temporar
Hash TableH  (202.10.25.7, 65, 21 )Hask?TabPé
Ster% ‘Rep 3
hashkey wid: 21 wid: 22 hashkey
202.10.25.75 yypleCnt: 3ls{tupleCnt: 5| | 202.10.25.7

alt: eager | ~|sym: 50 sum: 6( tupleCnt: .
winVol: 8 |« sum: 1!

\\\Tuole Buffer B

yg :

Figure6-18 Outputting a result for a group in transition—a resufircduced with
data from both hash table H and the temporary hash baiiteo compute aggregates
from tuples in buffer B

Processing Punctuation: Punctuation arrival will trigger output of window
aggregates for completed window extents, and the aggregattayp@ocesses each
group according to its status—eager, lazy, or transition-eimswis.

1. Eager: Scai to find all eager groups. For each such group, remove andtoutpu
partial aggregates covered by the punctuation, then decneaol of the group by
thetupleCnt of each such partial aggregate.

2. Transition: Figure 6-18 shows punctuation processing foouwpgn transition. Scan
B, using tuples that match the punctuation to build a tempdiash tablel on the

grouping attributes. Remove tuplaf the punctuation covers the upper range of its
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wid, and decremennmnVol for its group. Scal and output the aggregate for each
group, merging it with the partial aggregate for the sgmep andmd in H, if such
exists. (In practice, we reusefor the temporary hash table to avoid the overhead
of building another hash table.)

3. Lazy: Process as in Case 2, except there are nmgxysirtial aggregates to merge.
At any time, ifwinVol of a group drops to O, remove it frdtin

Discussion: A potential problem here is that the memory coshettansition period
might be higher than with either eager or lazy al@amel the transition period lasts for
almost the duration of a window extent. However, we eixpaly a fraction of groups
to be in transition at the same time. Another possgbblem is that all the lazy
groups share buffds. As the the number of tuples Bhincreases, the latency for lazy
to eager transition increases, because it requires scammnfind tuples belonging to
the group switching to eager. To reduce that latency, wél gmartition the shared
buffer B into bins, and partition the hash tableinto corresponding sections, and let
groups in each section share one bin. Note that becalystiples from sparse groups
go to bufferB, the size of buffeB is linear in the number of groups. The AdaptWID
implementation can be enhanced with panes, as we hsmessied. The tumbling-
window sub-aggregation can designate individual panes inup @® eager or lazy. If
the collective size of the tuples in the pane is graaser a pane aggregate, the item

contains a partial aggregate (eager); otherwise, it cangalist of input tuples (lazy).
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6.3.5. Performance Study of AdaptWID
We implemented AdaptWID and compared it to eager and lggyegation in
NiagaraST. All of our experiments were conducted on &@l@nPentium® 4 3.40
GHz machine, running Linux (Centos 7.3), Sun® Java VM 1.5h W{EB main
memory. We used two queries in this part of the performanady, Q6-7 and Q6-8.
Q6-7 is a tumbling-window sum query with window size one sdcand thus
represents tumbling-window aggregation over single data soQ&® is a sliding-
window count query over the union of three network links &ng tepresents sliding-
window aggregation over multiple data sources. We assuee punctuation ots.
Thus, window extents of all groups are terminated atdheegime.
Q6-7: “Compute the total size of the packets from a network traffic link, Main,
in the past 10 seconds for each source IP; update the results every second.”
SELECT srclP, sum(len)
[RANGE 1 second, SLIDE 1 second, WA ts]

FROM Main
GROUP-BY srclP
Q6-8: “Count the number of the packets from three network traffic links, Mainl,
Main2 and Control, in the past 10 seconds for each source IP, and update the
results every second.”
SELECT count(*)

[RANGE 10 sec, SLIDE 1 sec, WA ts]

FROM (Main2 [0 (Mainl O Control))
GROUP-BY srclIP
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Table 6-2: Five Data Sets (DS1 — DS5) with Skewed Data DistribatiBach
contains a different percentage of small, medium, argelgroups. (The small groups

of DS1 — DS5 contain 1, 3, 5, 7, 9 percent of the data, ctepky.)

Dataset| DS1 DS2 DS3 D34 DS5
Percentage
Small Groups 39% 66% 7% 82% 87%
Medium Groups 51% 28% 19% 15% 11%
Large Groups 10% 6% 4% 3% 2%

Data Generation: Using network-packet headers from the Passive Measuteandn
Analysis projec48], we generated input streams for Q6-7 and Q6-8. For Q&7, w
generated an ordered input stream with data-distributiow.sk® simulate data
distribution skew, we assign data to three types of grarpall, medium, and large.
A small group is defined to contain one record; a medjumup contains an average
of 15 records, and a large group an average of 300 recordaryrthe data skew, we
distribute 1, 3, 5, 7, or 9 percent of the data to smaiiggoa fixed 20 percent of the
data to medium groups, and the remainder to large groupsy gnarp is assigned a
group-id, and we replaced the srclP attribute value obtiginal data with the group-
id. The result is five data sets, each with the saureber of records, but different
record distributions, as shown in Table 6-1. The dataigetis approximately 135
MB. For Q6-8, we generated three data streams to emtlade approximately
synchronized data sources with each individual streakeisesd in data distribution:
two streams simulating the main links with high data nau(approximately 4000
tuples/second) and one stream simulating the controthaikcontains a small amount

of data (almost empty). The total data set size is appedely 135 MB. We varied
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Figure 6-19 WID vs. AdaptWID for a tumbling-window query over a singkta
source, Q6-7, and a sliding-window query over three dataesu@b-3

the amount of time skew between the Control streaitla main streams; there is no
time skew between the two main streams.

Experiments and Results:Figure 6-19 compares eager aggregation and AdaptWID
on Q6-7, and lazy aggregation, eager aggregation, and AdaptwIQ6-8. Graphs
(@), (b), and (c) in Figures 6-19 show memory usage, katenud execution time,
respectively. Memory usage is the maximum memory usedglguery execution.
Latency is the difference between the arrival twh@ punctuation and the output time
of the aggregates covered by that punctuation. Executianreffects the CPU cost,
and is the running time of a query over the input datarsetnumbers reported in our
performance study for latency and execution time areatleeage of eight runs. As
Figures 6-19 shows, AdaptWID outperforms eager aggregatiohtimed categories
for both queries: The memory benefit of AdaptWID isngigant, confirming our
expectations. The execution time and latency beneftdaptWID is due to the hash
table in the AdaptWID aggregate operator containing many fenteles than the hash
table used for eager aggregation, greatly reducing the sadees. In general,
compared to WID, the benefits of AdaptWID increaseshaspercentage of small
groups increase, because with more small groups, WID needsiritain more partial
aggregates while AdaptWID leverages lazy aggregation fomta# groups.

Although WID (the eager-aggregation approach) is generdigti@r implementation
for stream query evaluation than the buffering implergon (the lazy-aggregation
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approach), it might not be space efficient in dealing vd#ta distribution skew.
AdaptWID adapts between the two implementations basedti@am properties,
including stream volume, arrival order, and synchronizatibdifferent data sources,
and achieves better performance than both WID and fiferibpg implementation.

In summary, we presented three order-insensitive impletens of window
aggregation: WID, which is directly based on our semaahiinition for window
aggregation, and two extensions of WID, Paned-WID and Addptwhich optimize
for execution time and memory usage, respectivelyhérést of the thesis, we will be
looking further at disorder-tolerant operator implemBoits and stream-system

architectures.
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Chapter 7

ORDER-INSENSITIVE IMPLEMENTATIONS OF WINDOW JOIN

Current window join implementations often require ordergput streams and also
need to maintain output order, as current stream querytoperermally assume that
streams should be ordered. In this chapter, we preseder-imsensitive

implementations of window join. Such implementatidosnot need to rely on ordered
streams for purging state and can output results on ythaitthout enforcing output

order. Thus, these implementations normally have bletiency performance than the
order-sensitive ones, because input tuples can be procesdbe dy without the

delay of waiting for late tuples and result tuples candbeased on the fly without
being sorted. Also, order-insensitive implementationsviotiow join often have a a
smaller footprint than the order-sensitive ones becsodag the results of join may

require a large amout of memory.

7.1.  Order-Insensitive Implementation of Window Join

In the following, we present order-insensitive implemeatest of sliding-window join

and tumbling-window join. These implementations make naicgshs on the arrival

order or synchronization of their input. We begin validing-window join.

Figure 7-1 shows the OA-JoiO{der-Agnostic Join) algorithm for sliding-window
join. The input streams are SO and S1, the progressiniguggtists, and the window

condition is equivalent to the band predicate,t$S- RANGER) < S.ts < (So.ts +
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RANGE;). For ease of presentation, we ignore join predicatesther data attributes
in the WHERE clause. OA-Join maintains a tuple untdaib confirm that no tuples
from the other input stream will join with that tup@A-Join also maintains the low-
watermark timestamp of each input stream. It is impoitimmote that new tuples do
not always need to be stored. As BrecessTuple() function shows, if thés value of

a new tuple is smaller than the high-watermark bound nilrei® ANGE value for the
other input, that tuple can be processed on the fly andrdisd, because all the tuples
with which it needs to join have already arrived oa thher stream. The amount of
state that OA-Join needs to maintain depends on tlggge® of the input streams. In
general, the progress of the left input indicates whugtes from the right input can
be purged, and vice versa.

In our algorithm, a join result contains botht§ and $.ts, the windowing attribute
values of the two input streams. This result construdims allows a subsequent
operator to use3s, S.ts, the pair (Sts, S.ts) or a function of &ts and S.ts (e.qg.,
max(S.ts, S.ts) or min(S.ts, S.ts)) as its progressing attribute. Some existing
window join implementations produce only one timestamgpbate in the join result.
This attribute is often equal to one of the two input stamps; other implementations
use the maximum of the two input timestamps as the tamgs of the result. As
shown in theProducePunctuation() function, OA-join produces punctuation fog.tS
and S.ts separately, which we termmdividual punctuation. Individual punctuation
indicates the progress of the join result on eithgs 8r S.ts, and allows subsequent
operators to deduce stream progress even when their pingrasisibute involves
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both S.ts and S.ts or a function of &ts and $.ts. For example, if the operator’s
progressing attribute is max(, S.ts), it can progress ts when it receives
punctuation fois from both $ and S; if its progressing attribute is mind&, Si.t9), it
can progress t@ when it receives the first punctuation ®rfrom either $ or S.
However, as we will explain in the next section, prongdthe progress of the join
result on the combination 0$.8 and S.ts may allow subsequent operators to produce
results sooner.

Our order-insensitive implementation of tumbling-window jeiequivalent to stream
join with an equality predicate on progressing attributesss#nilar to that of sliding-
window join, but simpler because windows on both inpwastis have the same size.
Figure 7-2 shows the OA-Join implementation for tumblingdew join with
predicate, StYRANGE = S.tRANGE, using integer division. The main difference
between OA-Join for sliding-window join and OA-Join fambling-window join is in
the predicates in the the ProcessTuple(), ProcessPunctuation() and
ProducePunctuation() functions, including the predicate thRtocessTuple() uses to
determine if a tuple should be stored, the predicatePtuaessPunctuation() uses to
determine if a tuple can be purged, and the predicatd’tbdticePunctuation() uses
to determine the output punctuation value.

Discussion: Both order-sensitive implementations of join and our engensitive
implementation, OA-Join, can produce join results imiaely, although different

state management may cause differences in outputy.délae order-sensitive
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implementations of join require ordered input and relytl@nordering to purge state.

State Maintain

bo, b1: bounds on the low-watermark of left and right input,
respectively; initialized to —oo;

Mo, Ms: sets of tuples maintained on left and right input,

respectively; initialized to J;

Join(x)
let S; be the input stream to which x belongs;
if X is a tuple
ProcessTuple(x, S);
else if x is a punctuation
ProcessPunctuation(x, Sj);

ProcessTuple(t, S)
join t with matching tuples in M;
if t.ts = b1.i— RANGE;

add t to M;

ProcessPunctuation(p, Sj)
bi = p.ts;
for each k in My
if k.ts <p.ts — RANGE;;
purge k;
ProducePunctuation (p, S));

ProducePunctuation(p, Sj)
output a punctuation for S;.;.ts with value min(b; —=RANGE;.;, bi.);
output a punctuation for S;.ts with value min(b;.; — RANGE;, bj);

Figure7-1 OA-Join for sliding-window join.

OA-Join purges state based on punctuations. The amoustiatef that the order-
sensitive implementations of join and OA-Join mainiaternally is similar. The OA-
Join implementation may require maintaining even maiernal state than the order-

insensitive implementations, because input-stream disatelays the expiration of
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tuples. However, the order-sensitive implementationg me&d to buffer output tuples
to maintain order for sliding-window join, while OA-Joiarcrelease output tuples in

any order, and requires no output buffer.

State Maintained:

bo, b1: bounds on the low-watermark of left and right input, respectively;
initialized to —;

Mo, M3: sets of tuples maintained on left and right input, respectively;

initialized to;

Join(x)
let S; be the input stream to which x belongs;
if X is atuple
ProcessTuple(x, S);
else if x is a punctuation
ProcessPunctuation(x, Sj);

ProcessTuple(t, S)
join t with matching tuples in M;
if t.ts = b1.i/RANGE

add t to M;

ProcessPunctuation(p, Sj)
bi = p.ts;
for each k in My
if k.ts < p.ts/ RANGE;;
purge k;
ProducePunctuation (p, S));

ProducePunctuation(p, Sj)
output a punctuation for Sy.i.ts with value min( b/RANGE FRANGE, b..);
output a punctuation for S;.ts with value min(b;, [ b1./RANGE FRANGE);

Figure7-2 OA-Join for tumbling-window Join.
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7.2.  Producing Finer-Granularity Punctuation
Although subsequent operators can deduce the progrese girthresult based on
individual punctuation of the two timestamps in result tuples, the OA-Join
implementations can also produce another form of punotuain the timestamp
attributes of both Sand S, which we termjoint punctuation. As we discuss below,
joint punctuation may improve the latency of subsequentabps. Consider the
following query, Q7-1, which counts established TCP conoestper time period in
the network traffic between two linksg &nd S. It defines a band predicateyS— 2)
< Sits < (S.ts + 2)—the band is symmetric and thus it is equivaler(Stds — 2) <
So.ts< (Si.ts + 2). We will refer to the predicate as “the band” fus tiscussion. The
band is used to set a practical constraint on the rahgackets that each packet may
need to be matched with. Thus, Q7-1 joins SYN and SYN_A@ekets from Sand
S, for a network connection between &d S over the past 2 mintues of each other,
and computes the number of SYN and SYN_ACK pairs for eaotesponding pair of
timestamps (§ts, Si.t9).
Q7-1: “Count the number of SYN, SYN_ACK pairs (SYN_ACK arrives after
SYN for no more than 2 minutes) for network connections between Sy and S;
for each time period, i.e., each pair of timestamps, (So.ts, Si1.ts).”
SELECT S.ts, Si.ts, count(*)
FROM S, [WA ts, RANGE 2 min],
S1 [WA ts, RANGE 2 min]

WHERE So.srclP = S;.destIP and Sp.destlP = Sy.srclP and

So.srcPort = S;.destPort and Sp.destPort = S;.srcPort and

((So.ts < Sy.ts and Sop.flag = SYN and S;.flag = SYN_ACK) or

(So.ts > Sy.ts and Sp.flag = SYN_ACK and Si.flag = SYN))
GROUP BY So.ts, Si.ts;
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Here, joint punctuation is punctuation optSand S.ts together, and can allow the
count to output results with less delay than with irdiml punctuation. Figure 7-3 and
Figure 7-4 provide the pseudo-code for producing joint punctudtdorsliding-
window join and tumbling-window join, respectively. These atpms only produce
joint punctuation with &ts and S.ts values within the join window of each other, as
those are the only resuts pairs that the join may produce. Unlike individual
punctuation, joint punctuation production is independent ofidewv size, and
therefore can be produced earlier than individual punctuatibis difference may be

significant for joins with a large window size.

ProducePunctup( S)
b =p.ts;
if b —b1; < RANGE, or b;; — b < RANGE
output a punctuation with vais by andby.j for § and ¢, respectively

Figure7-3 Joint punctuation production for sliding-window OA-Join.

ProducePunctuatiopyS)
b =p.ts;
if b/RANGE =b;//RANGE;;
output a punctuation with valubsandb.; for § and S, respectively;

Figure7-4 Joint punctuation production for tumbling-window OA-Join.

Figures 7-5 (a) and (b) illustrate the progress informatian individual punctuation
and joint punctuation, respectively, can provide for the toperator in Q7-1. In

Figure 7-5, the x- and y-axes indicate thgalues of $and 3, respectively; the solid
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lines indicate the region of timestamps that satiséytdind predicate. Dark dots on the
axes represent punctuation in the input streams. Theemdf input punctuation

represent global arrival order. Number pairs represemtt gaitput punctuation ony$s

and S.ts, and dotted lines outline the coverage of each output puioctua

~ Sots /

p2 p4 p6 .

Figure7-5 Individual vs. joint punctuation — produced by Q7-1

Observe that joint punctuation allows the Count operatd@dnAl to output results
with less delay. Consider the aggregate group in the Cqamair with $ts value
equaling 1 and &s equaling 0. With individual punctuation, the Count operator can
output this group when it receives punctuation (*, 1); witintjgunctuation, it can
output the group when it receives punctuation (2, 1). Pummtudt, 1), which
indicates that join has produced all results witlisalue smaller than 1, is produced
by join when it receives punctuatiggb—a punctuatiorp on S allows the output of
punctuation on § with timestamp value.ts less the window size. Punctuation (2, 1),
which indicates that join has produced all results witks Salue smaller than 2 and

Si.ts value smaller than 1, is produced when join receives purartug3. In our
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example p3 is received one minute befqed. Thus, with joint punctuation, the Count
operator outputs the group one minute earlier than witividual punctuation.

In general, an individual punctuation is defined on a singhestamp attribute and
covers a “slab” region as shown in Figure 7-5(a), waijeint punctuation is defined
on both timestamp attributes and covers a “box” reg®shown in Figure 7-5(b). A
“slab” finishes when all the tuples in the coverediordiave been produced and thus

it finishes later than most of individual boxes caongithe same region.

7.3.  Performance Study of OA-Join

We compared the OA-Join algorithm and order-preserving emhtations for
sliding-window join that guarantee the order of the resmiitfpin using NiagaraST.
The experiments were conducted on a Dual-Core AMD Optéréocessor 2214
with 4GB main memory, running Ubuntu Linux 2.6.17-10-server, am®®SJava VM
1.5.

Data Generation: For our experiments, we generated data streams using network
packet headers from the Passive Measurement and Analysjsctpj48]. We
generated two data streams, with data volume approximd@9 tuples/second,
called M1 and M2. The total data set size is approximately MIB5 In our
experiments, M1 and M2 are ordered and synchronized.

Experiment 1: The first set of experiments compare the memorycEien time and
latency performance of OA-Join and an order-preservingtpubd-buffered
implementation, which we call OPOB-Joi@rflerPreservingOutputBuffered Join),
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of a sliding-window join query for Q7-2 below in Niagara$J7-2 joins packets that
satisfy the window condition and are also in the same¢Flow, but for different
directions, and requires the output of join to be omlene the timstamp of the first
input stream. The OPOB-Join implementation of slidingdew join does not output
the join results on the fly; instead, it uses an outyple buffer to sort the results and
output them in order. We varied the window sizef the join operator from 1 second
to 9 seconds, and measured the maximum memory usagey latehexecution time
of the query.

Q7-2: “Count the number of network packet pairs in each minute from M1 and
M2, in the same Netflow but in the opposite direction.”

SELECT count(*) [RANGE 1 minute, SLIDE 1 minute, WA M1.ts]
FROM M1 [RANGE n, WA ts],
M2 [RANGE n, WA ts]
WHERE M1.srclP = M2.destIP and M1.destIP and M2.srclP and
M1.srcPort = M2.destPort and M1.destPort = M2.srcPort
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Figure 7-6 Memory, latency and execution time comparison of GA-and OPOB-
Join implementation for a sliding-window join query, Q7, different band sizes
Figures 7-7 shows (a) maximum memory usage, (b) latemcly(@ execution time
comparisons of the OA-Join and the OPOB-Join impleat®emt of Q7-2. The y-axes
of (a), (b), and (c) show maximum memory usage, metiitency, and execution
time, respectively. Latency is the difference betwdnoutput time of an aggregate
and the arrival time of punctuation from the input streahat triggers the output of
the aggregate. Execution time reflects the CPU costisaiheé elapsed time of a query
running at full speed over the input data set. The latendyeaecution-time numbers
are the average of 8 runs. The memory overhead is deisticmfor a given input

order and is the same across runs. OA-Join significantiperforms the OPOB-Join
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implementation on Q7-2, especially on memory and Igteas OA-Join can avoid

sorting the output of the join before aggregating.
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210 .
/////./ —a— OA-Join
190

170 ./_/

150 T T T T

Memory (MB)

Window Size (Seconds)

Figure 7-7 Memory comparison of OA-Join and the OPIB-Join en@ntation for a
sliding-window join query, Q7-2, for different band sizes

Experiment 2: In this experiment, we compared the memory uage of @A-dnd
another order-preserving implementation of sliding-wingmw, which we call OPIB-
Join (OrderPreserving, InputBuffered Join). This OPIB-Join implementation
performs join in such an order that the results are praldudde desired output order,
and thus it may have better memory performance tha®®@B-Join implementation
for join queries when join predicate is not very seaee—that is, when the output data
volume of the join is higher than its input data volutdewever, the input-buffered
implementation incurs more delay in producing join resatis thus may have higher

latency than the output-buffered implementation. Is #xperiment, we use the same
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query, Q7-2, and the same two data streams, M1 and M2 ,Eageériment 1. Figure
7-8 shows the memory comparision of the OA-Join andXiREB-Join of Q7-2. OA-

Join uses slightly less memory than the OPIB-Joiplementation for all window
sizes in the experiment. Thus, although OPIB-Join usesh less memory than
OPOB-Join, OA-Join is still better than OPIB-Joirmemory usage for Q7-2.

In summary, we presented order-insensitive implememniatior slidng-window join

and tumbling-window join in this chapter. These order-insesgsitinplementations
benefit from avoiding the overhead of maintaining outpwenr but need query
operators following them to be order-insensitive. Faaneple, if a sliding-window
join is followed by a window aggregation, order-insensitiveplementations of
window aggregation are required for the join to use an rondensitive

implementation. Note that the ability of window aggrewatio handle disordered
input leads to performance benefits of window join. The ruepter extends this

notion of “disorder-handling benefits” systematicatiywwhole queries.
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Chapter 8

OUT-OF-ORDER STREAM QUERY EVALUATION

In this chapter, we present a new, order-insensitivearstreuery processing

architecture, OOP (Out-of-Order Processing), which is motivated by the order-
insensitive query operator implementations presented inquewhapters. The OOP

architecture takes our idea of separating stream progresphysical stream arrival

one step further and enables out-of-order processinge ayttem level. In an OOP

architecture system, punctuation is inserted into input str@anh query operators are
required to propagate punctuation so that each stream qoergtar receives stream-

progress information from its input(s). Thus, with the FD@rchitecture, query

operators in a stream-query execution plan can be orsiensitive.

Compared to the previous IORN{Order Processing) approach that requires
maintaining stream order, the benefits of the OOP tawfire include reduced

memory usage and response time. In addition, for maskit@ streams such as
network traffic from the backbone network of AT&T, ®QCalso leads to better

workload shaping and thus increases the maximum data aate fuery can support

without dropping tuples. The benefits of the OOP architeatome from avoiding the

need to enforce order on streams, especially inter-apestaseams. As we will discuss

later in this chapter, even when input streams are ordeted,operator streams can

be disordered. More importantly, in real-world applicasio stream-processing
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systems are often deployed in distributed computing envirotaneshere the cost of

enforcing order on inter-operator streams may be prohibitive

In contrast to existing techniques for handling disorder, sischlack, we argue that
OOP provides system-level support in propagating stream progmdss thus more

effective and efficient in dealing with disorder. Redatt slack is a parameter of a
guery operator specifying an amount of delay for waiting delayed tuples, for

example, 10 tuples or 1 minute, and handles disorder ajuig-operator level. A

query operator with slack will retain each tuple in a éufor the specified delay

period, attemping to put delayed tuples into order. The usd#ream system needs to
provide the slack parameter for each query operator, hirgstte slack parameter is

a non-trivial problem, as we explore in the next exampl

Window Count
RANGE 1 min, SLIDE 1 min
WA: ts

T

Union

Union

Control Mainl Main2

Figure8-1 Query plan for query Q1-1 in Chapter 1

Let us consider the query Q1-1 from Chapter 1 again and certipatOOP and IOP
(with slack) evaluation of this query. The logical p@mQ1-1 is shown in Figure 8-1

again. Q1-1 computes the count of packets over the comlmnatithree streams.
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When there are time skews among the three streaenspthbined stream is disorded.
If the Window Count operator handles disorder using sldek Union operators can
pass tuples through immediately. Then, however, thesystust determine the slack
parameter for the Window Count operator. Unless the sikesv of the input streams
is known and fixed, it is very difficult to set slack ttve Window Count operator so it
precisely captures the disorder of the combined streaumst tuples will be dropped
if the slack is set too small, while a latency penalty & incurred if the slack is set
too large. Further, even when the time skew of the inpeasts is known and fixed,
setting slack for query operators processing intermedigigams is non-trivial. For
example, if we replace the Union below the aggregate aviliding-window join, the
disorder in the output of the join (in terms of both tuptaint and the amount of
maximum delay on the progressing attribute) will be gretiten that of the input
streams; hence the window aggregation will need to uaserlslack than that for the
union of input streams. To our knowledge, no one has peskentcomprehensive
method for calculating the appropriate slack on an opé&atatput stream from the
slack of its input streams. Further, the operator produdiegirttermediate stream,
such as a sliding-window join operator, may have the gxagress information that
its downstream operator requires, and thus it is wastefulave the downstream
operator re-discover or estimate it.

OOP deals with disorder by requiring query operators to propamaictuation that
communicates stream progress. In an OOP system, each operator receives
punctuation and thus does not need to deduce stream progressfenvations of its
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input(s). It is important to note that the main differen€®©OP and IOP is the means
they use to communicate stream progress. Even with selam-query operators in
IOP systems still need to deduce stream progress freanstarrival order, while in
OOP systems, stream progress is explicitly provided toycqpperators.

In this chapter, we will start with the generation pinctuation. Then, we briefly
discuss the order-insensitive implementations of strgaeny operators—to go along
with our previous order-insensitive implementations fondew aggregation and
window join. We will discuss other operators includinguty Select, Apply, Project,
Duplicate Elimination, and Union. We also discuss theebts of OOP, including
benefits for aggregation queries, join queries, and workdmadothing. Finally, we

present experiments comparing OOP versus IOP in GigasoopiiagaraST.

8.1.  Punctuation Generation

In this work, we use punctuation to carry stream prognegnation. Note that
although we choose punctuation—a data-driven mechanism—to prepsigeam
progress in this thesis, OOP can also work with otberdata-driven stream progress
mechanisms, such as operators periodically polling their iopatators for progress
bounds, or having a global scheduler track operator progress.

In general, any information that IOP systems use tarensrder on input streams can
be used to detect or bound the progress of those streanexaimple, knowledge that
an input stream is ordered, or limitations on the amotidelay expected or allowed.
Recall that we assume that streams must have a psaggyeattribute and the low-
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watermark of the progressing attribute value indicatepthgress of the stream. Also,
punctuation typically is defined on the progressing attrimftea stream (i.e., the
punctuating attribute is the progressing attribute). Heeeaafew examples of how
stream low-watermark can be detected and thus how puctuztn be created and
inserted into a stream.

* If an input stream is known a priori to be ordered, theJamtermark after a
prefix of the stream is the progressing attribute value¢hefmost-recently-
arrived tuple.

» If an input stream contains out-of-order tuples but it isskmthat a tuple will
not be delayed by more tham tuples, IOP can enforce stream order by
buffering and re-ordering the input stream, as in the BQuerator of Aurora
[2]. In this case, the low-watermark of the input strezam be estimated by the
maximum progressing-attribute value of arrived tuples exaotudhe lastn
tuples.

* Widom et al.[61] propose a heartbeat mechanism to enforce ordeutof-o
order input caused by time skew and transmission delay, paodose
algorithms that estimate parameters that charactdieegossible sources of
disorder and generate heartbeats based on these magrSeich algorithms
can be used to estimate stream progress and then geparat®ation in
similar situations.

In order to adapt an IOP system to OOP, we must eitthér painctuation to the
system, or, if the system already supports punctuationmust extend it to fully
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support out-of-order processing. (Some existing I0OP systesuch as Gigascope,
support punctuation for handling lulls.)

In Gigascope, punctuation is initiated by timer callbacksuining an input stream is
ordered, the callback function can insert a punctuatiorrying the largest
progressing-attribute value observed so far in the retreeery time the timer fires.
However, during lulls, the observetdta time—the current value of the progressing
attribute—drifts away from the system time. When thigetBnce between the data
time and system time is above a predefined threskottle callback function inserts
punctuation to advance the data time to (current sysieens).

One must be careful when adding punctuation to IOP sysespecially for stream
systems that support batch processing (i.e., query opei@®invoked for a “batch”
of input tuples instead of for each individual tuple). Punabmathay trigger ouput
(e.g., for aggregate queries) or may be used to purge sigtef@r join queries). Thus,
for stream systems that support batch processing, punctigitauld be treated as a
high-priority tuple: Once a punctuation arrives, the ingpess batch should be
considered complete and should be shipped to down-streamarpeiote that this
completion of a batch affects only the timing of tuppEnsmission and does not affect
result values. Punctuation delayed by batch processing nhay wksult production
and thus increase latency, particularly for sparsersgea

IOP systems that already support punctuation may reqairdrivial effort to extend
punctuation to fully support OOP. First, OOP systems oglypunctuation to make
progress, thus the system should produce punctuation ah@agity finer than both
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the smallest window size and the smallest window slliteved in the stream system.
The granularity of punctuation used for handling lulld@P systems can be much
coarser, as such punctuation only needs to guaranteesttieam queries make
progress during lulls. Second, timer callbacks for geimgygtunctuation may initiate
duplicate punctuation, if the timer is set at a graityldme enough to satisfy the
smallest window slide. For efficiency, it is desiratieavoid such duplicates; further,
it is also desirable to produce only punctuation that mnest¢he boundaries of the
smallest window slide currently used in the system. &ample, if the smallest
window slide used by queries currently running in the sysger seconds, it is
desirable to produce punctuation with a 5-second granularitynarfiner. Third, to
provide stream-progress information efficiently, a queryrafoe should choose what
punctuation to produce based on the requirements of the @p#rat consumes its
result. Tucker[71] has proposed a Describe operator that provides puioctuat
appropriate for downstream operators. The describe opdriérs out punctuation
that will not help downstream operators and rolls incomingctuation up to the
appropriate level.

We have experimented with punctuation in two systengasgope and NiagaraST.
Gigascope supports timer-driven punctuafi®8]—in a low-level sub-query, a timer
callback function fires every second (in wall-clock édmand a punctuation carrying
the stream low-watermark is inserted into the inputastreAs the input stream to the
low-level sub-query is ordered, determining the punctuataue is straightforward.
NiagaraST supports data-driven punctuations. In the absémogeonal punctuation
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provided by a data source, NiagaraST can insert punctuatmithe data stream. In a
simple scheme, if a data stream is known to be orddliadaraST inserts punctuation
into the stream when it observes that the valub@ptogressing attribute has changed

by a predefined amount.

8.2.  Order-Insensitive Implementation of Query Operators

In this section, we briefly discuss the order-ins@resiimplementation of stream
guery operators (beyond window aggregation and window jaoid)campare them to
their order-sensitive counterparts. Order-sensitive anieintations typically require
ordered streams and need to preserve stream order; msdasitive implemenations
do not. Compared to order-sensitive implementations, oandensitive
implementations free query operators from the burdeprederving stream order and
thus often improve in the operators’ memory and latgmeformance.

Input: The Input operator is the interface between extedadh streams and other
guery operators in a stream system. The implementafioime Input operator can be
very application-dependent. Order-sensitive implemeaniatiof the Input operator
need to guarantee stream order; order-insensitive imptatimrs of the Input
operator need to put punctuation into the input stream. Bgilementations need the
the same type of information about data arrival, eitbeensure stream order or to
insert punctuation. For example, both can benefit fkoowing whether the stream is

ordered or the maximum amount of disorder in streams.
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Select, Apply, Project: As most unary query operators are neither blockingstateful,
they do not require ordered streams to process tuples; #iso,pipelined
implementations used in regular relational DBMSs et&hoperators work for stream
systems. If the input stream is ordered, the pipelined em@htations naturally
preserve order. For unary operators, the progress ofinjnat stream directly
determines the progress of the output stream, and thutuption processing for such
operators is simple. Select passes through punctuaéd@mpdy and Project need to
first transform input punctuation into the output schéx@re putting it to the output.
For the Project operator, we assume its output inclireprogressing attribute(s).
DupElim: Duplicate elimination (DupElim) also naturally preservedeo; the issue is
when state can be purged. The order-sensitive implengabf DupElim can
remove state whenever the progressing attribute advaawcdsthe order-insensitive
implementation relies on punctuation to purge its state.

Union: The order-preserving Merge operator, as in Gigasd8fg is an order-
sensitive implementation of Union. The Merge operatortrhuffer tuples from one
input during a Iull or delay on the other input in order tousssordered output.
Punctuation can be used to reduce the buffering requirecbduliston one input, but
if there is time skew between the inputs, the Merge atpemust still buffer the
earlier input. The memory and latency costs of Mergedatermined by the lulls (or
punctuation granularity when punctuations are availallé)odfsets between the input

streams. (Recall that we define offsets betweenrdiftestreams in Sectidh3.)

156

www.manaraa.com



The order-insensitive implementation of Union, which eedl Meld, can pass input
tuples through immediately. The Meld operator needs to imfeit punctuations in
order to correctly produce output punctuations, but punctuatigmsatly constitute
only a small fraction of stream volume. Further, forear punctuation, when
punctuations are guaranteed to arrive in the desired otlderorder-insensitive
implementation needs only remember the most recentymtian on each input. For
Meld, we require that the progressing attributes of bopluti streams are the same.
Suppose that the input streams are R and S, and the Vathe st punctuation
arrived on them are.punctVal and SpunctVal, respectively. When a new punctuation
p with valuets arrives in R, the Meld operator can output a punctuatibim value
min(ts, SpunctVal), and vice versa for a punctuation from S. An issue isetieat the
Union operator may produce duplicated punctuations. For exarsppgpose that
R.punctVal and SpunctVal are 20 and 19 respectively. If punctuation from S for times
20, 21 and 22 arrives before any further punctuation from Runien will output
punctuation for 20 at least three times. To avoid producingcdtg punctuation, the
Meld operator can maintain the value of the last puncuatutput, and only output a

punctuation if its value is greater than the valuéheflast punctuation.
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State Maintained:

bo, b1: bounds on the low-watermark of left and right input,
respectively; initialized to —oo;

o: low-watermark of the output stream; initialized to —oo;

Union(x)
let S; be the input stream to which x belongs;
if X is a tuple
ProcessTuple(x, Sy);
else if x is a punctuation
ProcessPunctuation(x, S));

ProcessTuple(t, S)
output t;

ProcessPunctuation(p, Sj)

bi = p.ts;

if o <min(b;, bi-)
output a punctuation with value min(b;, b1.);
0= min(bi, bl.i);

Figure8-2 Order-insensitive implementation of Union—Meld.

The implementation of Meld for linear punctuation iowh in Figure 8-2—the
Union() function is called for each tuple or punctuation. Asnpared to the order-
enforcing Merge operator implementation, the Meld implatiagon is lightweight in
terms of both memory and latency. The only statet tthee Meld operator
implementation maintains is the most recent punctuatdune from each input stream
and for the output stream. Group-wise punctuation may remmstaining such state
for each group. Meld passes tuples through immediatelyit @naits punctuation with
the minimum progressing-attribute value observed from bsitieams (minus

duplicates). Since the Union operator is necessary fanstgeieries monitoring data
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from multiple sources, such as multiple network-tcaffinks, the lightweight
implementation can be a great advantage. When an orelssrping Union is used,
both memory and delay incurred by Union can be prohibitive guduts or in the

presence of time skew.

8.3. Cases for OOP

In this section, we discuss the benefits of OOP foregggion and join queries, as
well as for workload smoothing when processing massive statams, which can
promote higher throughput. As the following examples wilistrate, the benefits of

OOP often come from processing (disordered) intermediaéams more efficiently.

8.3.1. OOP Benefits for Aggregation

T

Window Count

¥eIgT I

$$$ Of

$| - A

Figure 8-3 Merge enforces order on intermediate results evemiie query has a
single, ordered input stream

In OOP stream systems, as out-of-order tuples arddthmdthout delay, aggregation

gueries may have a smaller footprint and better lateacypared to IOP systems.
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Even for queries with a single, ordered input streamsprder may occur in
intermediate streams. For example, the input streaay be split and processed
through different sub-queries (such as might be needed dbwork-protocol
simulation), and the combination of the sub-query resulty be disordered. Figure 8-
3 shows an example with an ordered input stream: The ismuit according to an
inexpensive predicate A; tuples not satisfying A are pututfitoan expensive
predicate B before being merged with the stream of tigalgsfying A. The output of
the merge contains tuples that satisfy either A orhi& tesult is fed to a Window
Count operator.

With the non-OOP alternatives, either the Union operageds to enforce order on
data—with a cost of memory and latency—or the Window Copetator has to use
slack to account for the disorder caused by the delaytineraxpensive predicate B.
With OOP, the Union operator passes tuples through imneddiatnd every query
operator propagates punctuation; thus, Window Count receiwesrade stream
progress information. Also, using WID, tuples can be imatety reduced into partial
aggregates by the Window Count operator. Overall, maintapangal aggregates is
much less space intensive than buffering tuples and keepspigaessing delay

minimal; propagating stream progress precisely capturesnatiiate-stream disorder.

8.3.2. OOP Benefits for Join
In OOP systems, the Join operator may often haveadlesnfootprint and is able to

produce results with less delay, as OOP processes edelatupe earliest possible
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time without waiting for late tuples so as to process tupleorder. In particular, the
Join operator may process and also purge on-time tupleseagarliest possible
moment, thus reducing latency and memory usage.

Consider the join query with input streamsaBd S, and a sliding window, [RANGE

2 minutes, WALs|, on each input stream. Assumg rBay potentially contain a small
fraction of tuples that are delayed by at most 5 minaed, input stream;Sarrives
ordered. $ and § are approximately synchronized, which means that—ignoring
delayed tuples—tuples fromy &nd S with the samés value arrive at about the same
time. Figures 8-3(a) and 8-3(b) show the IOP and OOP ei@igabf the sliding-

window join query.

7 min. of data > mi fd 7 min. of data
for S; forn;m. of data for S;
Join Ol Join
(RANGE 2 min, WA Sq.ts (RANGE 2 min, WA Sq.ts
RANGE 2 min, WA S,.ts) RANGE 2 min, WA S,.ts)
5 min. of data /
for So I s
ort
SO/ Sl So S1
(a). IOF (b). OOF

Figure8-4 Evaluation of a band join (maximum allowed delay insS®minutes)

With IOP, due to potentially delayed tuples i§ & buffered Sort operator is required
to enforce tuple order foroSIt holds 5 minutes of Stuples, and thusoSuples are

generally delayed for 5 minutes. The Join operator mamtaiminutes of Stuples (2

161

www.manaraa.com



minutes due to the window condition and 5 minutes due to thgetel tuples). Join

will not need to maintain any state fog, &s 3 tuples arrive 5 minutes behind S
tuples and hence all matchingt8ples are available when eacght&le arrives.

With OOP, both Sand S tuples are presented to the Join operator without delay. As
Figure 8-4(b) shows, the join maintains 5 minutes ofuples and 2 minutes 0% S
tuples, becausepS3uples are purged by; $unctuation on time while ;Suples are
purged late due to delayed ®iples and punctuation. Overall, the OOP evaluation of
the join query maintains 3 minutes less gt@ples, and can produce most join results

earlier than the IOP evaluation.

IOP buffering

0TZEVS9

> Sl.tS

012345 67

Figure8-5 Output buffering in IOP band join with output orderedsrts

Further, in OOP systems, the Join operator need notcen@oder on its result. In
contrast, the IOP approach may a require large amdumiffer space to order the
output of a sliding-window join and thus it often is inderto the OOP approach.
Figure 8-5 illustrates this buffer requirement for a jowth a sliding window
[RANGE 3 minutes, WAs] on &, and a sliding window [RANGE 2 minutes, W%

on S. It also assumes that input streamgsaBd $ are approximately synchronized,
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and assumes that the join results need to be order8gtanThe single-hatched area
illustrates the amount of results produced by the slidingdow join; and the cross-
hatched area illustrates the amount of buffering redumoeorder the output. As the
figure shows, when bothy&nd S progress to time 6, the join needs to buffer results
produced by & tuples withts values between 4 and 6. In general, the required
buffering for ordering join output in IOP systems incrsagéh the window size of
the Join operator. (The exact amount of buffering isrdeted by the desired output
order, the window conditions, the data rate of the irgbrgams, and the arrival time
skew of the input streams.) In OOP systems, resulisiofcan be released on the fly,

without any delay or buffering, and immediately processea fiybsequent operator.

8.3.3. Workload Smoothing

Workload smoothing is critical for systems dealing witlissive streams in (near) real
time. For such systems, a workload surge at a given openaty overload the system,
delay further data processing, and lead to loss of inputadaibsolete query results.
In this section, we discuss our experiments on work&adothing with OOP in the
Gigascope system. Workload surge can occur either in ingaotesmediate streams.
Workload surges in input streams are often caused by inpubdietis, and workload
surges in intermediate streams are often caused by fdpaiperators that are
periodically unblocked. For example, when a window endsdew aggregation
needs to scan the hash table of partial aggregates to pradsults and purge
completed items, and outer-join needs to locate angubutples that were not
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matched. Both can lead to a surge in output rate at a wibdandary. Here we focus
on smoothing intermediate workload surges created by the umgook blocking
operators.

In the following, we first review the implementatiorf window-aggregation in
Gigascope and how it relates to workload surges. Thenpregent a workload-
smoothing mechanism, slow-flush, originally implementadthe I0OP version of
Gigascope for window aggregation and outer-j&8]. Similar workload-smoothing
mechanisms are also used in other network-traffic-radng systemg36]. Finally,
we discuss workload smoothing in the OOP version of Gigscogeg two
approaches, slow-flush and lazy-flush. We present bottrf#lish and lazy-flush only
in the context of window aggregation, but similar technicales work for outer join.
Aggregation in Gigascope:Gigascope has a two-level architecture typical for-high
performance, potentially distributed data-monitoring systg], where the low level
is used for data reduction and must be lightweight, andhitte level is intended for
more complex processing. A low-level sub-query processesork packets from a
fixed-size ring buffer. Low-level and high-level queriasrin different processes
(possibly on different machines). Gigascope supports onlybliogawindow
aggregation natively. An aggregation query is split intovelevel sub-aggregation
and a high-level aggregation that rolls up the resultshefsub-aggregation. For
example, a count query is split into a low-level countrgwend a high-level sum
guery. To ensure the low-level sub-aggregation is flagseis a fixed-size hash table to
maintain aggregates of different groups, so there is nandignspace allocation. On
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hash-table collision, the existing aggregate in the kadk is output to accommodate
the new aggregate. At the end of a window, the low-lguely flushes the hash table
and outputs all aggregates in it. However, if the numbgraups is large, flushing the
hash table causes a workload surge, during which time rigebuffer can overwrite
itself and packets are lost.

Slow-flush mechanism:Gigascope uses a slow-flush mechanism to smooth workload
surges at window boundaries in low-level aggregation. WWldw-flush, when a
window completes, the low-level sub-query gradually out@ggregates from the
previous window while processing new packets, instead of flushiingggregates
from the hash table at once. Figure 8-6 shows the outlifew-level aggregation
with slow-flush in the IOP case—Figure 8-6(a) shows fotple is processed in a
low-level aggregation and Figure 8-6(b) showsSlweviFlush() function that is called

by the low-level aggregation.
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State Maintained:

hashtable: the fixed-size hashtable that low-level aggregation maintains;
each hashtable entry represents a group and consists of the grouping
attribute values of the group and the partial aggregate for it;

status: a table that records the type of the content for each hashtable
entry, including new, old, or empty

Init():
flush_finished = true;
flush_pos = 0;

ProcessTuple(t):
if t indicates the start of a new window extent
if ('flush_finished)

flush all the remaining hashtable entries marked as old, and mark
them as empty;

flush_finished = false;
flush_pos = 0;
if (fflush_finished)
Slow_Flush();
key = hash key of t;
if status[key] == empty
create a new aggregate with t in hashtable[key];
if status[key] == new
if t belongs to the group of the exising aggregate
update the existing aggregate with t
else
flush all the hash entries in hashtable marked as old;
output the existing aggregate in hashtable[key];
create a new aggregate with t in hashtable[key];
if status[key] == old
flush hashtable[key];
create a new aggregate for t in hashtable[key];

(a): the outline
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SlowFlush()
if (Mflush_finished and status[flush_pos] == old)

output hashtable[flush_pos];

status[flush_pos] = empty;

flush_pos++;

if (flush_pos > hashtable.size)
flush_finished = true;

(b) the SlowFlush() function

Figure8-6 Low-level aggregation with slow flush—tBewFlush() function

The status table indicates the content of each hasitewhether a hash entry is
empty, contains a partial aggregate for the new windove, potential aggregate for
the previous, old window. As th@rocessTuple function shows, on hash-table
collision, if the existing aggregate belongs to the olddew, it is output and the slot
is used for the new aggregate. However, a problem odcthie existing aggregate
belongs to the new window. Because low-level aggreganast preserve output
order, it must first flush all the aggregates of the ollddew before it can output the
existing colliding aggregateTherefore, because it must satisfy the order requiremen
slow-flush may not effectively smooth out the outptittiee low-level aggregate,
especially when the number of groups is large. Flushing tble tadble can create a
workload surge during which incoming tuples cannot be processeting the

maximum stream rate supported by IOP. In general, dlost+intentionally increases

* The deployed version of Gigascope actually uses a bepecement policy—if the existing
aggregate belongs to the new wind@&mpcessTuple also checks the next hash entry to see whether it
can accommodate the new aggregate without flushingdefigiiregates.
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result latency to smooth out the workload, but the amad latency that IOP can
introduce for that purpose is very limited, due to its prdaintenance requirement.

In contrast to IOP with slow-flush, OOP may permtich higher throughput. The
most important benefit of OOP in terms of workload sthow is that, as it has no
order requirement, the low-level aggregation does not neeflush all partial
aggregates from the previous window when two aggregates fremev window
collide. In more detail, suppose the desired maximum loetlkatency ism windows.
OOP can address workload smoothing in two ways. Firstaytuse lazy-flush, which
simply relies on hash table collisions to naturallysii old aggregates, but with a
check that aggregates are flushed with a maximum delaywahdows. Alternatively,
OOP can also explicitly use slow-flush. OOP with skiwsh outputs one old
aggregate everynew packets, and guarantees a maximum result defaywfidows.
Bothi andm are tunable parameters of the low-level sub-aggregad®me show in
our performance study, both OOP with lazy-flush and O@R slow-flush achieve

better throughput than I0P with slow-flush when there lsrge number of groups.

8.3.4. Discussion

OOP is a more scalable architecture, especially inrilgised computing

environments, where the input data for a query operator coeye from different

processors, or even different machines far from onehanofn issue with 10OP in
such an environment is that operators can be blocked duéworkecongestion and
routing problems of a single processor. For exampleCB onnection might break
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and need to be re-instantiated. These network problemsatsse a significant delay
and even hang an IOP system. In addition, even whennétwork is reliable,
enforcing order on data coming from multiple processors mauyr prohibitive
memory and latency costs due to variations in datartigegdn delays and processor
workloads.

OOP is also a more permissive architecture that camnawodate operator
implementations that require out-of-order processingt €&xample, to improve
throughput, stream systems may want to process tuplesfootder. Avnur and
Hellerstein propose an adaptive query processing mechanaiad Eddies, that
dynamically routes tuples to query operators based ontopdwad[6]. To improve
interactive query performance, Franklin et [&0D] propose algorithms that re-order
tuples based on their importance. Further, the OOP ectinit potentially opens new
options for query optimization. In traditional databagstems, one logical operator
may have multiple physical implementations and trstesy may choose among them
based on the properties of input relations. SimilarlPOsystems can potentially
choose among different physical implementations oit&dgjuery operators based on
properties of input streams. For example, the WID implatation generally has quite
low memory requirements. However, in situations whigxe number of tuples per
window is small, the size of partial aggregates is laeygl some tuples are late
enough to keep several windows open, then the memoryddDomay exceed that

of the buffered implementation. In such situationdyuffered implementation that
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processes windows sequentially may be preferable, althougturs more delay for

enforcing tuple order and computing aggregates.

8.4.  Experimental Evaluation

In this section, we present an experimental study ofGfDP implementations in two
stream systems, Gigascope and NiagaraST. We conversian of Gigascope to
OOP and term the converted systems OOP-Gigascope. ¥eimplemented 10P
guery operators in NiagaraST for the purpose of theserimgrds and term it IOP-

NiagaraST.

8.4.1. Performance Study of OOP with Gigascope

The experiments with Gigascope were conducted using Hetf@eds generated by
the RouterTester® traffic generator. RouterTestarpsoduct of Agilent Technologies
Inc. The traffic generator can generate multiple steaf IP traffic, and the content
of each stream can be configured, including the number akieps per second. Our
focus was to evaluate the memory and throughput benefl@®Od&f over high-speed
streams. Each experiment is running until the measurentabibze. All experiments
were conducted on a dual-processor dual-core Intel® XeoBPU 2.80GHz
processor with 4 GB of RAM running Linux 2.4.21.

Experiment 1: This experiment shows how OOP can improve throughput glurin
workload surges, and uses the following query, Q8-1, which casphe number of
packets from a network interface for each (srclPtlEgpair for every minute.
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Q8-1: “Count the number of packets from each source and destination IP pair
in the Main link for the past minute; update the results every minunte.”

SELECT srclP, destIP, count(*)
[RANGE 1 minute, SLIDE 1 minute, WA ts]

FROM Main
GROUP BY sclP,
destIP
900 - Numberof Groups
<5 800 — |@66K
Y 700 B — - | m130K
2 L
£ 600 | i — — E— — I |O260K
2 500 | - - || L | o520k
<
@ 400 — — — - = =
© il | | 662 | || || |
g 300
8 200 — — — — -
©
0O 100 — — — = -
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IOP-% IOP-1 I0P-2 OOP-% OOP-1 OOP-2 OOP ooP OOP
(sf-  (sH-1  (sf)-2

Figure 8-7 Throughput comparison of IOP and OOP for a count queni,@8ing
Gigascope

We executed Q8-1 with Gigascope and OOP-Gigascope, varysgqitmber of
groups in the stream and the size of the hash table usetebipw-level sub-
aggregation. In addition, we experimented with two OOplementations of the low-
level sub-aggregation—with slow-flush and lazy-flush. Weasured the maximum
stream rate that Gigascope and OOP-Gigascope could suppboutwdropping
tuples, by incrementally increasing the stream rate bp&dkets per second until the
query starts dropping tuples. The number of groups was vaoed 66K to 520K—
more groups mean fewer tuples per group but more work whentongpresults at
window boundaries; the low-level hash-table size was rabp# on the number of

groups. For each case, we used three hash table sizesechalf to, and twice the
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number of groups. A smaller hash table means more oolisiA larger hash table
means fewer collision and thus fewer groups evicted befavenxdow completes, but
more groups evicted at flush time. OOP may use eittagrflash or slow-flush to

improve workload smoothing and thereby throughput, althoughay introduce a

small amount of latency. In this experiment, both OQ§a&ope with lazy-flush and
slow-flush allow an extra delay of two windows to sprebd workload across
window boundaries. Further, OOP-Gigascope with slowhflagplicitly flushes an

aggregate for an old window every 160 incoming packets. Inasintsigascope uses
an aggressive slow-flush, explicitly flushing an aggregat®e per incoming tuple.

Table8-1 CPU Usage Comparison: OOP vs. IOP

um of grps 66K 130K 260K 520K
IOP-1/2 99% 99% 99% 68%
OOP-1/2 99% 99% 99% 95.6%
OOP (sf)-1/2 | 99% 99% 99% 94.6%
IOP-1 95.5% 97% 70.5% 51%
OOP-1 98.8% 99% 99% 94%
OOP (sf)-1 99% 99% 97.8% 91%
IOP-2 96.3% 85% 55.6% 50%
OOP-2 97.2% 97.9% 95.2% 95.6%
OOP (sf)-2 96.2% | 99% 97.3% 96.7%

Figure 8-7 shows the results of this experiment. The@®P and OOP (sf) represent
the OOP implementations of low-level sub-aggregatigthout slow-flush (lazy-

flush) and with slow-flush, respectively. Values %2, 1d @nindicate the relative size

172

www.manaraa.com



of the hash table in the sub-aggregation. In addit@mmeasuring the maximum
supported data rate, we also measured CPU utilizationeofotk-level query—the
data rate, the number of groups, and hash table siz&ealt £PU utilization. (The
data rate of the high-level query is much lower tham thahe low-level query and
thus the CPU utilization of the high-level query is @& much lower than that of the
low-level query.) Table 8-1 shows the peak CPU usage fr gqaery run. As it
shows, when the number of groups is large and with aguffinumber of hash table
entries, the CPU utilization of the IOP approachtfe maximum data rate that it can
support without dropping tuples is much less than its OO&nterparts, which
indicates that it can only support a much lower stredm ttean those counterparts.
When the number of groups is small, for example 66Kstream rates that IOP and
OOP can support are about the same, and the CPU tidgitigaare all close to
saturation. However, when the number of groups is lavigle,a reasonable hash-table
size, OOP can support a much higher stream rate thanA@Pexample, at 260K
groups, with 540k hash table entries, OOP and OOP (sf)upgog 760K pkts/sec
and 800k pkts/sec, respectively, while IOP can only support 408#spk. However,
an overly large hash table may adversely affect ttwughput of the query because it
increases the workload for hash table flush, esped@llyhe IOP cases. With 520K
groups, IOP-2 only supports a maximum data rate of 350K packetepend, with
CPU utilization of 50% and I0P-1 supports only 300K packets memsewith CPU
utilization of 51%. As we have discussed, when theeehash-table collision between
an incoming packet and an existing aggregate from the cwieddw, IOP needs to
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flush all aggregates from the previous window before any heples can be
processed. During the hash table flush, new packets enritly buffer are not
processed and packets will be dropped if the ring buffer fillbken the number of
groups is large and the data rate is high, an overly laagh table (over a million
entries in our example) causes an increase in the nwhbggregates to be flushed (a
larger workload surge), and reduces the data rate that I@Psuggport without
dropping tuples. The low CPU utilization for IOP with avedy large hash table is
associated with the low data rates that IOP can supptirese cases. An overly large
hash table means a large number of groups to output andchtlalismore work during
flush, and so the instantaneous peak CPU usage can get to WB0&sthe average
CPU usage far from saturated. OOP is generally bettr tOP, especially for
streams with large numbers of groups, and is less sengitihe hash-table size.
Experiment 2: This experiment examines the potential memory-usagefiberof
OOP for aggregation queries monitoring multiple data sourcgiag the following
query, Q8-2, which computes the number of packets for eatbesand destination IP
address of M1 and M2 links.

Q8-2: “Count the number of packets from each source and destination IP pair
in M1 and M2 links for the past minute; update the results every minunte.”

SELECT srclP, destIP, count(*)
[RANGE 1 minute, SLIDE 1 minute, WA ts]

FROM M1 UNION M2
GROUP BY srclP, destIP
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Figure8-8 Comparison of memory usage for OOP- and IOP-Gigasaopenondow-
count query over the union of two streams (Q8-2), for nargkew

The rates of M1 and M2 are both 110k pkts/sec, and thertotaber of groups in
them is 65,536. We varied the arrival-time skew of M1 and M&f0 to 40 seconds,
and executed Q3 with both Gigascope and OOP-Gigascope, nectindi maximum
memory usage. (We ran each query several hours untileteory usage stabilized.)
Figure 8-8 shows the results of this experiment. OOP glyeises less memory than
the original 10P version of Gigascope; as arrival-tiskew increases, the memory
usage of OOP remains relatively flat, while that of i@deases dramatically.
Experiment 3. This experiment provides a comparison of memory usage in
Gigascope for a tumbling-window join query, Q8-3, with a windaxe of 10 seconds

and input from multiple sources. Q8-3 joins packets within dhmme NetFlow (a
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network connection between a pair of srclP and stcBod destIP and destPort), but

in opposite directions.

Q8-3: “Find the network packet pairs from the union of A with B and the union
of C with D that are in correponding NetFlow for each 10-minute interval.”

SELECT M1.srclP, M1.destIP, M1.ts

FROM A UNION B as M1, C UNION D as M2
[RANGE TUMBLING 10 seconds, WA ts],

WHERE M1.srclP = M2.destIP and M1.destIP and M2.srclP and
M1.srcPort = M2.destPort and M1.destPort = M2.srcPort
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Figure 8-9 Memory comparison of IOP and OOP evaluation for abtimgrwindow
join query, Q8-3, with arrival skew of different inputestims

Each input to the join operator is a union of two stredsmson(A, B), and Union(C,

D). Q8-4 specifies a 10-second tumbling-window join condiiiorGigascope. The
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rate of each stream is 10K pkts/sec. (In practicabstf@in queries, the input rates
are often relatively low, because of prior data reducby sampling or aggregation.)
We varied the arrival-time skew of A-B, and C-D from 0 to Ee@onds, and
recorded the maximum memory usage of each query run. FBg@ishows the results
of this experiment. The number of tuples that the IO® @OP approaches need to
maintain is the same. The difference is that in tB@ Mersion, the tuples reside in
input buffers of merge operators; in the OOP versioty, éine held in join hash tables.
This experiment shows that while there is structurariowad for the Gigascope
implementation of OOP join, compared to its IOP impdatation, the overhead is not
severe. When the arrival skew is below 20 seconds,ntbeory overhead is
inconsequential. In this experiment, the OOP join use®scst 20% more memory
than the IOP case. Our OOP join implementation usethdbb-table structure of the

original IOP join, which was not optimized for memayerhead.

8.4.2. OOP with NiagaraST

Experiments in NiagaraST were conducted on a Dual-CoreD ABipterori™
Processor 2214 with 4GB main memory, running Ubuntu Linux 2-803erver, and
Sun® Java VM 1.5.

Data Generation: For our experiments, we generated stream sources okdiffdata
volumes and different time skews using network packedéws from the Passive
Measurement and Analysis projgd8]. We generated three streams, two with high
volume (approximately 4000 tuples/second), called M1 and M2,0aedwith very
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low volume (less than a tuple per second), called C. {bt&l data set size is
approximately 135 MB. We simulated time skews among M1, M2 @&nby
manipulating the placement of tuples in the data file usedenerate the three

streams.
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Figure 8-10 Memory comparison of IOP and OOP evaluation in N&garfor a
tumbling-window join query, Q8-4, with late tuples on one input

Experiment 1. This experiment compares memory usage of IOP and O©ORNfo
equality-join query on progressing attributes, Q8-4, in-Nb&yaraST and NiagaraST.
Q8-4 is a tumbling-window join that joins packets within thensaNetFlow but in
opposite directions. One input of the join contains fap@es, which is simulated by

combining M2 with a version of C that is skewed latee Telay of C varies from O
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second to 10 seconds. Figure 8-10 shows that with the inaretisedelay of the late
tuples from O to 10 seconds, the memory use for OOPasesemore slowly than for
IOP. (Although Figure 8-10 looks similar to Figure 8-9, the ravigde a-axis values
of the two figures are significantly different—the x-swif Figure 8-9 ranges from 0O to
120 seconds, which is much broad than Figure 8-10.) The mexdeaytage of OOP
comes from the Join operator in OOP purging M2 tuplesesaiian in 10P.
Q8-4: “Find the network packet pairs from the M1, and the union of M2 and C,
that are in corresponding NetFlows for each 1 minute interval.”
SELECT M1.srclP, M1.destIP, M1.ts
FROM M1, M2 Union C as M3

[RANGE TUMBLING 1 minute, WA ts]
WHERE M1.srclP = M3.destIP and M1.destIP = M3.srcIP and

M1.srcPort = M3.destPort and M1.destPort = M3.srcPort
Experiment 2: This experiment compares memory performance of IORO&E on a
sliding-window aggregate query over multiple sources, Q8-EDiNiagaraST and
NiagaraST. Q8-5 computes the sliding-window count of packets @ UNION of
M1, M2 and C.

Q8-5: “Count the number of packets in M1, M2 and C links for the past 5
minutes; update the results every minunte.”

SELECT count(*)
[RANGE 5 minutes, SLIDE 1 minute, WA ts]
FROM M1 UNION M2 UNION C
We varied the delay of the arrival of C from O to 1@osels, and measured the

maximum memory usage. Figure 8-11 shows that the memory o$d@® grows

significantly as the delay of C increases, while thaD@IP is relatively stable. Here,
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the memory benefit of OOP is due to OOP aggregatiorttireeducing tuples into

aggregates without first buffering and sorting the input.

400

380

360 —
340 /
320

o
g /
2 300 oP
g // —=—OOP
o 280 = -
= —

260

240

220

200 T T T T T

0 2 4 6 8 10 12

Arrival-time Skew (Seconds)

Figure8-11 Memory comparison of IOP and OOP in NiagaraSTafsiiding-window
count, Q8-5, with arrival-time skew among multiple data

Discussion: Our experience with OOP architectures is encouraging.h&ve seen
improvement over IOP in memory, latency and throughput rursdevariety of
conditions. The fact that improvements were seewasubstantially different stream
systems, NiagaraST and Gigascope, suggests that thetbesfe®OP are widely
applicable. The implementation overhead for supporting @@$% not seem severe,
recognizing that any practical stream system will neettears-progress mechanism
beyond just tuple arrival, so that lulls in one inpineam do not completely stall the

stream system.
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Chapter 9

CONCLUSION AND FUTURE WORK

This thesis focuses on more flexible and more efficeamatiuation of window stream
queries. We observed that the evaluluation of windowastr queries can utilize
information on stream progress, and does not requitered streams. Based on this
observation, our work in this thesis removes the orglguirement for stream systems
by introducing order-insensitive implementations of winddvguery operators and a
new architecture for stream systems.

In this thesis, we start with a new data model foeastrs, the progressing-stream
model. Instead of requiring ordered streams, the progressigm model separates
stream progress from physical-arrival order and only reguihat streams have a
progressing attribute. Then, assuming progressing streamspresent window-
semantics definitions for a window aggregation and wingww. In our definition,
window semantics are defined on the window specificaiod the progressing
attribute value of tuples in the streams and need nporedny physical stream arrival
properties. The window-semantics definitions lay thentation for the order-
insensitive implementations of window aggregation and wingmin. We present
three implementation algorithms for window aggregatitie: WID implemenetation,
which is directly based on our window semantics dedinjtithe Paned-WID
implementation, which optimizes the execution time dtiding-window aggregation
by sharing sub-aggregates, and AdaptWID, which optimizes #aomny usage for
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input with data distribution skew. We also present ordezrissive evaluation
algorithms for tumbling-window join and sliding-window join. d3e order-
insensitive implementations leverage punctuation to atdiends of window extents.
They not only naturally accommodate out-of-order input,diso perform better than
their order-sensitive counterparts, especially in terfihmseomory usage and latency.
The order-insensitive implementations of stream qupeyators allow us to move to a
new architecture for stream systems, O@Rit{of-Order Processing). OOP is in
contrast to IOPI1(-Order Processing), which is the existing architecture that many
stream systems assume. The key idea of the OOP atolates explicitly
communicating stream progress to query operators and thusgfrggery operators
from the burden of order maintainence. We use punctuaigothe mechanism to
explicitly communicate stream progress in our implergon of OOP—propagating
punctuation is part of query operator implementations. axgerimented with the
OOP architecture in two stream systems, Gigascope aghNiST, and performance
results from both systems are encouraging.

Here we also briefly discuss the tradeoffs of thePO&dchitecture. Having explicit
information on stream progress indicates overhead3OR systems, in both system
implementation and query execution. In the implemesnatif OOP systems, query
operator implementations need to support punctuation minges-or example, with
OOP, the implementation of window aggregation must suppaputting results and
purging state based on punctuation, while with IOP, as wiralygregation processes
a window extent at a time, outputting results and purgtegfe can be easily
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implemented by flushing the hash table. However, makirgpstrprogress explicit
also simplifies some operator implementations, astaiaing stream order is not
needed in OOP systems. For example, without maingiroutput order, the
implementation of the (bag) Union operator with the Q®kuch simpler than IOP.
In query execution, punctuation may increase the volunsé&redms and thus increase
guery processing time and consume transmission bandwidthstinbuted stream
systems. However, Tucker observed very limited punctugtionessing overhead
even with punctuation-to-tuple ratios as high as 15%. Thesalts assume that
punctuation is grammatical. Otherwise, query operators gbrleast the input
operators) also need to block any tuples violating punctyatiehich induces
increased computational cost per tuple.

The OOP architecture allows a wider range of optionssfam query evaluation,
and thus can lead to other interesting topics. Firstcouent implementations always
produces accurate results. However, if the amountsofder is large, the latency that
it takes to produce accurate results may not be tolefabieal-time applications. It is
interesting to consider extending the current OOP ar¢hie@do support speculative
results that are approximate, but can be produced eadriatiturate results, and then
revisions that correct the speculative results. Secirehm-query optimization is also
interesting in the OOP architecture in that the effettiisorder must be considered in
cost models for comparing alternative query plans. Third, ase lproposed an
adaptive algorithm for aggregation to deal with varying das&idutions. Adaptive
algorithms for window join to deal with varying stream pmties such as data
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distribution skew and arrival-time delays are also dées. Overall, we believe that
our work allows stream query evaluation to be more flexamd potentially opens up

other research topics.
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